PetDB: 2022

    1. Alférez, G.H., Esteban, O.A., Clausen, B.L., Martinez Ardila, A. M., 2022,Automated machine learning pipeline for geochemical analysis, Earth Science Informatics, doi: 10.1007/s12145-022-00821-8
    2. Aulbach, S., Stachel, T., 2022 Evidence for oxygen-conserving diamond formation in redox-buffered subducted oceanic crust sampled as eclogite. Nat Commun, doi: 10.1038/s41467-022-29567-z
    3. Boone, S., Dalton, H., Prent A., et al., 2022, AusGeochem: An Open Platform for Geochemical Data Preservation, Dissemination and Synthesis, Geostandards and Geoanalytical Research, doi:10.1111/ggr.12419
    4. Carley, T.L., Bell, E.A., Miller, C.F. , Claiborne, L.L. , Hunt, A., Kirkpatrick, H.M., Harrison, T.M. , 2022, Zircon-modeled melts shed light on the formation of Earth’s crust from the Hadean to the Archean. Geology, doi: 10.1130/G50017.1
    5. Chilson-Parks, B., Calabozo, F., Saal, A., Wang, Z., Mallick, S., Petrinovic, A., Frey, F., 2022, (accepted), Unraveling the signature of metasomatized subcontinental lithospheric mantle in the basaltic magmatism of the Payenia volcanic province, Argentina, G-Cubed , doi: 10.1029/2021GC010071
    6. Condie, K. C., Puetz, S. J., Spencer, C. J., & Roberts, N. M. W., 2022, Secular compositional changes in hydrated mantle: The record of arc-type basalts, Chemical Geology, doi: 10.1016/j.chemgeo.2022.121010
    7. Dauphas, N., Nie, N., Blanchard, M., et al., 2022, The Extent, Nature, and Origin of K and Rb Depletions and Isotopic Fractionations in Earth, the Moon, and Other Planetary Bodies, Planet. Sci. J., doi: 10.3847/PSJ/ac2e09
    8. Davies, G.F., 2022, Some Chemical Clarifying. In: Stories from the Deep Earth. Springer, Cham. doi:10.1007/978-3-030-91359-5_14
    9. Díaz-Bravo, B., Ortega-Obregón, C., Schaaf, P., Solís-Pichardo, G., 2022, Evidence of hydration of the peridotite mantle wedge recorded in low-CaO olivines from Los Tuxtlas Volcanic Field, Veracruz, México, Lithos,doi: 10.1016/j.lithos.2022.106638
    10. DiMaggio, E., Mana, S., and VanHazinga, C., 2022, EARThD: an effort to make East African tephra geochemical data available and accessible, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13330,doi:10.5194/egusphere-egu22-13330
    11. Garbe-Schönberg, D., Koepke, J., Müller, S., Mock, D., Müller, T., 2022, A reference section through fast-spread lower oceanic crust, Wadi Gideah, Samail Ophiolite (Sultanate of Oman): Whole rock geochemistry, Journal of Geophysical Research: Solid Earth, doi: 10.1029/2021JB022734
    12. He, Y., Zhou, Y., Wen, T., Zhang, S., Huang, F., Zou, X., Ma, X., Zhu, Y., 2022, A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications, Applied Geochemistry, doi:10.1016/j.apgeochem.2022.105273
    13. Holycross, M., Cottrell, E. ,2022,Experimental quantification of vanadium partitioning between eclogitic minerals (garnet, clinopyroxene, rutile) and silicate melt as a function of temperature and oxygen fugacity. Contrib Mineral Petrol,doi: 10.1007/s00410-022-01888-8
    14. Kwayisi, D., Elburg, M., Lehmann,J., 2022 Preserved ancient oceanic lithosphere within the Buem structural unit at the eastern margin of the West African Craton, Lithos, doi: 10.1016/j.lithos.2021.106585
    15. Labidi, J., 2022,The origin of nitrogen in Earth’s mantle: Constraints from basalts 15N/14N and N2/3He ratios,Chemical Geology, doi:10.1016/j.chemgeo.2022.120780
    16. Labidi, J., Dottin, J., Clog, M., Hemond, C., Cartigny, P., 2022, Near-zero 33S and 36S anomalies in Pitcairn basalts suggest Proterozoic sediments in the EM-1 mantle plume,Earth and Planetary Science Letters, doi:10.1016/j.epsl.2022.117422
    17. Liao, R., Zhu, H., Li, C., Sun, W., 2022, Geochemistry of mantle source during the initial expansion and its implications for the opening of the South China Sea, Marine Geology, doi:10.1016j.margeo.2022.106798
    18. Liu C.-Z., Dick, H. J. B., Mitchell, R. N., Wei, W., Zhang, Z.-Y., Hofman, A. W., Yang, J.-F., Li, Y., 2022, Archean Cratonic Mantle Recycled at a Mid-Ocean Ridge, Science Advances, doi:10.1126/sciadv.abn6749
    19. Liu, B., & Shi, J., 2022, A Machine Learning-Based Approach to Discriminating Basaltic Tectonic Settings, International Journal of Computational Intelligence and Applications, doi: 10.1142/S1469026822500122
    20. Liu, J., Tao, C. Zhou, J., et al., 2022, Water enrichment in the mid-ocean ridge by recycling of mantle wedge residue, Earth and Planetary Science Letters, doi: 10.1016/j.epsl.2022.117455
    21. Liu, X., Zhang, Q., Zhange, C., 2022, Identification of the Original Tectonic Setting for Oceanic Andesite Using Discrimination Diagrams: An Approach Based on Global Geochemical Data Synthesis, Journal of Earth Sci., doi: 10.1007/s12583-021-1507-y
    22. Ma, H., Xu, L-J., Shen, J., Liu, S-A., Li, S., 2022, Chromium isotope fractionation during magmatic processes: Evidence from Mid-ocean ridge basalts, Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2022.04.018
    23. Martínez-Serrano, R. G., Valadez-Cabrera, S.-N., Roberge, J., & Cristiani-Solís, C. G., 2022, Origin of bimodal rear-arc volcanism, Trans-Mexican Volcanic Belt eastern sector: Geochemical and isotopic evidence from the Quaternary Xihuingo-La Paila Volcanic Field. Geological Journal, doi:10.1002/gj.4390
    24. Matsuno, S., Uno, M., Okamoto, A. et al., 2022, Machine-learning techniques for quantifying the protolith composition and mass transfer history of metabasalt. Sci Rep., doi:10.1038/s41598-022-05109-x
    25. Ogungbuyi,P., Janney, P., Harris, C., 2022, Carbonatite, aillikite and olivine melilitite from Zandkopsdrift, Namaqualand, South Africa: Constraints on the origin of an unusual lamprophyre-dominated carbonatite complex and the nature of its mantle source, Lithos, doi:10.1016/j.lithos.2022.106678
    26. Owona, S., Schulz, B., Minyem, D., Ratschbacher, L., Chako Tchamabe, B., Bosco Olinga, J., Mvondo Ondoa, J., Ekodeck, G., 2022, Eburnean/Trans-Amazonian orogeny in the Nyong complex of southwestern Cameroon: Meta-basite geochemistry and metamorphic petrology,Journal of African Earth Sciences, doi: 10.1016/j.jafrearsci.2022.104515
    27. Pandey, A., 2022, Geochemical evidence for a widespread Paleoproterozoic continental arc-back-arc magmatism in the Lesser Himalaya during the Columbia supercontinent assembly, Precambrian Research,doi:10.1016/j.precamres.2022.106658
    28. Pang, F., Liao, J., Ballmer, M., Li, L., 2022, Plume-ridge interactions: Ridge 1 suction versus plate drag, Solid Earth Discussions, doi:10.5194/se-2022-20
    29. Payre, V. Dasgupta,R, 2022, Effects of Phosphorus on Partial Melting of the Martian Mantle and Compositions of the Martian Crust,Geochimica et Cosmochimica Acta, doi: 10.1016/j.gca.2022.03.034
    30. Portner, R., Dreyer, B., Claugue, D., Daczko, Castillo, P., 2022, Oceanic zircon records extreme fractional crystallization of MORB to rhyolite on the Alarcon Rise mid-ocean ridge, J Petrology, doi: 10.1093/petrology/egac040
    31. Roy, S., Bandyopadhyay, D., Morishita, T., Dhar, A., Koley, M., Chattopadhaya, S., Karmakar, A., Ghosh, B., 2022, Microtextural evolution of chrome spinels in dunites from Mayodia ophiolite complex, Arunachal Pradesh, India: Implications for a missing link in the “two-stage” alteration mechanism, Lithos,doi: 10.1016/j.lithos.2022.106719
    32. Taracsák, Z., Longpré, M-A., Tartèse, R., Burgess, R., Edmonds, M., Hartley, M., 2022, Highly oxidising conditions in volatile-rich El Hierro magmas: implications for ocean island magmatism, J. Petrol, doi: 10.1093/petrology/egac011
    33. Wang, S., Zhang, G., 2022, Geochemical constraints on source nature and recycled oceanic crust in the mantle of the Celebes Sea, Lithos, doi:10.1016/j.lithos.2022.106685
    34. Wang, Z-Z., Liu, S-A., Rudnick, R., Teng, F-Z., Wang, S-J., Haggerty, S., 2022, Zinc isotope evidence for carbonate alteration of oceanic crustal protoliths of cratonic eclogites,
      Earth and Planetary Science Letters, doi:10.1016/j.epsl.2022.117394
    35. Xu, Y., Liu, C-Z., Lin, W., Shi, X-F., 2022, Ancient depletion signals in lherzolites from forearc region: Constraints from Lu-Hf isotope compositions, Geoscience Frontiers, doi:10.1016/j.gsf.2021.101259
    36. Xu, Y., Yan, Q., Shi, X., Jichao, Y., Deng, X., Xu, W., Jing, C., 2022, Discovery of Late Mesozoic volcanic seamounts at the ocean-continent transition zone in the Northeastern margin of South China Sea (SCS) and its tectonic implication, Gondwana Research, doi:10.1016/
    37. Yan, Y., Zhao, Y., Xue, C. et al., 2022, Magma evolution and mineralization of the Baixintan magmatic Ni–Cu sulfide deposit in Eastern Tianshan, Northwestern China. Int J Earth Sci (Geol Rundsch) doi:10.1007/s00531-022-02169-2
    38. Yu, X., Liu, Z., Zeng, G., Cao, W., Meas, R., Hoang, L. V., & Sang, P. N., 2022, Mantle plume–stagnant slab interaction controls the generation of a mixed mantle source for continental intraplate basalts, Lithos, doi: 10.1016/j.lithos.2022.106795
    39. Zeng, Z., Li, X., Zhang, Y., Qi, H., 2022, Oxygen and Magnesium Isotope Systematics of Volcanic Rocks in the Okinawa Trough: Implications for Plate Subduction Studies. J. Mar. Sci. Eng., doi: 10.3390/jmse10010040
    40. Zhang, S., Jia, Y., Xu, H., Wen, Y, Wang, D., Wang, X., 2022, DeepShovel: An Online Collaborative Platform for Data Extraction in Geoscience Literature with AI Assistance, arXiv preprint arXiv:2202.10163
    41. Zhao, K., Dai, L.-Q., Fang, W., Zheng, Y.-F., Zhao, Z.-F., Zheng, F., 2022, Decoupling between Mg and Ca isotopes in alkali basalts: Implications for geochemical differenciation of subduction zone fluids, Chemical Geology, In Press, Journal Pre-proof, doi:10.1016/j.chemgeo.2022.120983
    42. Zhou, H., Qian, S., & Dick, H., 2022, Explosive Alkaline Volcanism on the SW Indian Ridge, [Preprint], In Review, doi: 10.21203/
    43. Zou, H. Li,Y., Huang, C-C., Said,N., Jiang,X-W., Liu,H., Li, M., Chen,H-F., Liu,C-M., Lan, Z-W., 2022, Ca. 815 Ma intra-plate granitoids and mafic dykes from Emeishan pluton in the western Yangtze Block, SW China: A record of rifting during the breakup of Rodinia,Precambrian Research,doi: 10.1016/j.precamres.2022.106569