1. Agterhuis, T., Ziegler, M., de Winter, N.J. et al., 2022, Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry. Commun Earth Environ, doi:10.1038/s43247-022-00350-8
  2. Aiuppa, A., Allard, P., Bernard, B., et al., 2022, Gas leakage from shallow ponding magma and trapdoor faulting at Sierra Negra volcano (Isabela Island, Galapagos), G Cubed, doi: 10.1029/2021GC010288
  3. Amann, B., Bertrand, S., Alvarez-Garreton, C., Reid, B., 2022, Seasonal variations in fjord sediment grain size: A pre-requisite for hydrological and climate reconstructions in partially glacierized watersheds (Baker River, Patagonia), JGR. doi: 10.1029/2021JF006391
  4. Audhkhasi, P., & Singh, S. C., 2022, Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean. Science Advances, 8(24). doi: 10.1126/sciadv.abn5404
  5. Barnes, S-J., Mansur, E., 2022, Distribution of Te, As, Bi, Sb, and Se in Mid-Ocean Ridge Basalt and Komatiites and in Picrites and Basalts from Large Igneous Provinces: Implications for the Formation of Magmatic Ni-Cu-Platinum Group Element Deposits. Economic Geology. doi: 10.5382/econgeo.4887
  6. Brehm, S. K., & Lange, R. A., 2022, Origin of low Mg# hawaiites carrying peridotite xenoliths from the Cima volcanic field, California, USA: Evidence of rapid magma mixing during ascent along intersecting fractures. GSA Bulletin. doi: 10.1130/B36390.1
  7. Boone, S., Dalton, H., Prent A., et al., 2022, AusGeochem: An Open Platform for Geochemical Data Preservation, Dissemination and Synthesis, Geostandards and Geoanalytical Research, doi:10.1111/ggr.12419
  8. Brugman, K., Till, C. B., & Bose, M., 2022, Common assumptions and methods yield overestimated diffusive timescales, as exemplified in a Yellowstone post-caldera lava. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-022-01926-5
  9. Casetta, F.,Rizzo, A., Faccini, B., Ntaflos, T., Abart, R., Lanzafame, G., Faccincani, L., Mancini, L., Giacomoni,P., Coltorti,M., 2022, CO2 storage in the Antarctica Sub-Continental Lithospheric Mantle as revealed by intra- and inter-granular fluids, Lithos. doi:10.1016/j.lithos.2022.106643
  10. Chapman, T., Milan, A., Metcalf, I., Blevin, P., Crowley, J., 2022, Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction, Nature Geoscience. doi:10.1038/s41561-022-00934-1
  11. Chen, S., Ni, P., Zhang, Y., & Gagnon, J., 2022, Trace element partitioning between olivine and melt in lunar basalts. American Mineralogist, doi: 10.2138/am-2022-7971
  12. Cisneros-Lazaro, D., Adams, A., Guo, J. et al. ,2022, Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent. Nat Commun. doi:10.1038/s41467-021-27782-8
  13. DiMaggio, E., Mana, S., and VanHazinga, C., 2022, EARThD: an effort to make East African tephra geochemical data available and accessible, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13330, doi: 10.5194/egusphere-egu22-13330
  14. Doucet, L., Gamaleldien,H., Li,Z-X., 2022, Pitfalls in using the geochronological information from the EarthChem Portal for Precambrian time-series analysis,Precambrian Research, doi: 10.1016/j.precamres.2021.106514
  15. Famin, V., et al., 2022, Multi-technique Geochronology of Intrusive and Explosive Activity on Piton des Neiges Volcano, R union Island, G-Cubed, doi: 10.1029/2021GC010214
  16. Gordeev, E.I., Bergal-Kuvikas, O.V.,2022, Structure of the Subduction Zone and Volcanism in Kamchatka. Dokl. Earth Sc., doi: 10.1134/S1028334X22020088
  17. Grenier, M., Brown, K.A., Colombo, M., Belhadj, M., Baconnais, I., Pham, V., Soon, M., Myers, P.G., Jeandel, C., François, R., 2022, Controlling factors and impacts of river-borne neodymium isotope signatures and rare earth element concentrations supplied to the Canadian Arctic Archipelago, Earth and Planetary Science Letters, dot: 10.1016/j.epsl.2021.117341
  18. Gu, Y., Wang, M., Zhang, Q., Ge, L., Xu, L., Lu, H., 2022, Accurate-parametric SAR-TL dating protocols for older sediments using quartz, Applied Radiation and Isotopes, doi: 10.1016/j.apradiso.2021.110072
  19. Hazen, R. M., Morrison, S. M., Krivovichev, S. V., & Downs, R. T., 2022, Lumping and splitting: Toward a classification of mineral natural kinds. American Mineralogist, doi: 10.2138/am-2022-8105
  20. He, Y., Zhou, Y., Wen, T., Zhang, S., Huang, F., Zou, X., Ma, X., Zhu, Y., 2022, A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications, Applied Geochemistry, doi:10.1016/j.apgeochem.2022.105273
  21. Kelson, J., Petersen, S., Niemi, N., Passey, B., Curley, A., 2022, Looking upstream with clumped and triple oxygen isotopes of estuarine oyster shells in the early Eocene of California, USA. Geology, doi: 10.1130/G49634.1
  22. Kern, C., Aiuppa, A. & de Moor, J.M. ,2022,A golden era for volcanic gas geochemistry?. Bull Volcanol 84, 43 (2022). doi: 10.1007/s00445-022-01556-6
  23. Kis, B. M., Szalay, R., Aiuppa, A., Bitetto, M., Palcsu, L., & Harangi, S., 2022, Compositional measurement of gas emissions in the Eastern Carpathians (Romania) using the Multi-GAS instrument: Approach for in situ data gathering at non-volcanic areas, Journal of Geochemical Exploration, doi: 10.1016/j.gexplo.2022.107051
  24. Kurek, M. R., Stubbins, A., Drake, T. W., Moura, J. M. S., Holmes, R. M., Osterholz, H., Six, J., Wabakanghanzi, J. N., Dinga, B., Mitsuya, M., Spencer, R.G.M., 2022, Organic Molecular Signatures of the Congo River and Comparison to the Amazon, Global Biogeochemical Cycles. doi: 10.1029/2022GB007301
  25. Lefeuvre, N., Truche, L., Donzé, F.-V., Gal, F., Tremosa, J., Fakoury, R.-A., Calassou, S., & Gaucher, E. C., 2022, Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study. Applied Geochemistry, doi: 10.1016/j.apgeochem.2022.105396
  26. Li, S., Zhang, M., Yuan, F., Li, X., Wang, C., Long, J., & Jiao, J., 2022, Isotope spatiotemporal analysis and prospecting indication based on GIS in Tibet. Ore Geology Reviews, doi:10.1016/j.oregeorev.2022.104997
  27. Licht, A., Kelson, J., Bergel, S., Schauer, A., Petersen, S. v., Capirala, A., Huntington, K. w, Dupont-Nivet, G., Win, Z., & Aung, D. W., n.d., Dynamics of pedogenic carbonate growth in the tropical domain of Myanmar. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2021GC009929
  28. Ma, C., Morrison, S. M., Muscente, A. D., Wang, C., & Ma, X., n.d., Incorporate temporal topology in a deep-time knowledge base to facilitate data-driven discovery in geoscience, Geoscience Data Journal, doi: 10.1002/gdj3.171
  29. Ma, C., Tang, Y., Ye, C., Ying, J., & Zhang, H., 2022, Mechanisms for phosphorus fluctuation in Phanerozoic volcanic rocks., Lithos. doi: 10.1016/j.lithos.2022.106764
  30. Ma, C., Tang, Y., & Ying, J., 2022, Volcanic phosphorus spikes associated with supercontinent assembly supported the evolution of land plants. Earth-Science Reviews, doi: 10.1016/j.earscirev.2022.104101
  31. Maltese, A., Caro, G., Pandey, O.P. et al., 2020, Direct evidence for crust-mantle differentiation in the late Hadean. Commun Earth Environ, doi: 10.1038/s43247-022-00341-9
  32. Mastroianni, F., Braschi, E., Casalini, M., Agostini, S., Di Salvo, S., Vougioukalakis, G., Francalanci, L., 2022, Data on unveiling the occurrence of transient, multi-contaminated mafic magmas inside a rhyolitic reservoir feeding an explosive eruption (Nisyros, Greece),Data in Brief, doi:10.1016/j.dib.2022.108077
  33. Moghadam, H., Hoernle, K., Hauff,F. , Garbe-Schönberg,D. , Pfänder,J.A., 2022,
    Geochemistry and petrogenesis of alkaline rear-arc magmatism in NW Iran, Lithos, doi: 10.1016/j.lithos.2021.106590
  34. Munroe, J. S., 2022, Relation between regional drought and mountain dust deposition revealed by a 10-year record from an alpine critical zone. Science of The Total Environment, doi: 10.1016/j.scitotenv.2022.156999
  35. Nicoli, G., Borghini, A., & Ferrero, S., 2022, The carbon budget of crustal reworking during continental collision: Clues from nanorocks and fluid inclusions, Chemical Geology, doi: 10.1016/j.chemgeo.2022.121025
  36. Phillips, S., Littler, K., 2022, Comparison of sediment composition by smear slides to quantitative shipboard data: a case study on the utility of smear slide percent estimates, IODP Expedition 353, northern Indian Ocean, Sci. Dril., doi:10.5194/sd-30-59-2022
  37. Raimbourgh, H., Famin, V., Canizares, A., Le Trong, E., 2022, Fluid pressure changes recorded by trace elements in quartz, G-Cubed, doi: 10.1029/2022GC010346
  38. Rasmussen, D., Plank, T., Roman, D., Zimmer, M., 2022, Magmatic water content controls the pre-eruptive depth of arc magmas, Science, doi:10.1126/science.abm5174
  39. Reubi, O., Müntener, O., 2022, Making andesites and the continental crust: Mind the step when wet, Journal of Petrology, doi: 10.1093/petrology/egac044
  40. Sammon, L. G., 2022, Earth’s Radiogenic Heat Production and the Composition of the Deep Continental Crust. doi: 10.13016/3rn6-wgpy
  41. Simonella, L. E., Cosentino, N. J., Montes, M. L., Croot, P. L., Palomeque, M. E., & Gaiero, D. M., 2022, Low source-inherited iron solubility limits fertilization potential of South American dust. Geochimica et Cosmochimica Acta, doi: 10.1016/j.gca.2022.06.032
  42. Smith, M., Swart, P., 2022, The influence of diagenesis on carbon and oxygen isotope values in shallow water carbonates from the Atlantic and Pacific: Implications for the interpretation of the global carbon cycle,Sedimentary Geology, doi: 10.1016/j.sedgeo.2022.106147
  43. Song, Y., Tian, Y., Yu, J., Algeo, T. J., Luo, G., Chu, D., & Xie, S., 2022, Wildfire response to rapid climate change during the Permian-Triassic biotic crisis, Global and Planetary Change. doi: 10.1016/j.gloplacha.2022.103872
  44. Steiner, A.,  Hickey, K. , Huntington, K., Schauer; A.,  2022, “Roll-Front” Mass Transfer of Carbonate Cations in Carlin-Type Gold Deposits: Insights from UV-Fluorescent Calcite Veins. Economic Geology, doi: 10.5382/econgeo.4908
  45. Urann, B.M., Le Roux, V., Jagoutz, O. et al. , 2022,High water content of arc magmas recorded in cumulates from subduction zone lower crust. Nat. Geosci. doi: 10.1038/s41561-022-00947-w
  46. Winslow, H., Ruprecht, P., Gonnermann, H., Phelps, P., Mu oz-Saez, C., Delgado, F, Pritchard, M., Amigo, A., 2022, Insights for crystal mush storage utilizing mafic enclaves from the 2011-12 Cordon Caulle eruption, Research Square, doi:10.21203/rs.3.rs-1366483/v1
  47. Wu, G., Zhu, J.-M., Wang, X., Johnson, T. M., He, Y., Huang, F., Wang, L.-X., & Lai, S.-C. (2022). Nickel isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2022.06.019
  48. Xu, C., Gréaux, S., Inoue, T., Noda, M., Gao, J., & Li, Y., 2022, Sound velocities of superhydrous phase B up to 21 GPa and 900 K. Geophysical Research Letters doi: 10.1029/2022GL098674
  49. Zambito, J. J., Haas, L. D., & Parsen, M. J., 2022, A portable x-ray fluorescence (pXRF) elemental dataset collected from Cambrian-age sandstone aquifer material, Wisconsin, U.S.A. Data in Brief. doi: 10.1016/j.dib.2022.108411
  50. Zirakparvar, N. A, 2022, Industrial garnet as an unconventional heavy rare earth element resource: Preliminary insights from a literature survey of worldwide garnet trace element concentrations, Ore Geology Reviews, doi: 10.1016/j.oregeorev.2022.105033