PetDB: 2014

  1. Acosta-Gongora P, Gleeson SA, Samson IM, Ootes L, Corriveau L. Trace Element Geochemistry of Magnetite and Its Relationship to Cu-Bi-Co-Au-Ag-U-W Mineralization in the Great Bear Magmatic Zone, NWT, Canada. Economic Geology. 2014; 109(7):1901-28, doi: 10.2113/econgeo.109.7.1901
  2. Albarède F, Albalat E, LEE C-. An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteoritics & Planetary Science. 2014; 50(4):568-77, doi:10.1111/maps.12331
  3. Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan RA, et al. The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters. 2014; 395:217-30, doi:10.1016/j.epsl.2014.03.047
  4. Baziotis I, Mposkos E, Asimow PD. Continental rift and oceanic protoliths of mafic–ultramafic rocks from the Kechros Complex, NE Rhodope (Greece): implications from petrography, major and trace-element systematics, and MELTS modeling. International Journal of Earth Sciences. 2014; 103(4):981-1003, doi:10.1007/s00531-014-1007-8
  5. Berger J, Ennih N, Liégeois J-. Extreme trace elements fractionation in Cenozoic nephelinites and phonolites from the Moroccan Anti-Atlas (Eastern Saghro). Lithos. 2014, doi:10.1016/j.lithos.2014.09.018
  6. Bodinier J-, Godard M. Treatise on GeochemistryOrogenic, Ophiolitic, and Abyssal Peridotites. Elsevier;  2014. p. 103-67, doi:10.1016/B0-08-043751-6/02004-1
  7. Byerly BL. Constraints from mantle xenoliths on the geodynamic evolution of Earth’s upper mantle. Vol PhD. Austin: The University of Texas;  2014, https://repositories.lib.utexas.edu/handle/2152/45854
  8. Cabral RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, et al. Volatile cycling of H 2 O, CO 2 , F, and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochemistry, Geophysics, Geosystems. 2014, doi:10.1002/2014GC005473
  9. Cai Y, LaGatta A, Goldstein SL, Langmuir CH, Gómez-Tuena A, Pozzo AL, et al. Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs. Chemical Geology. 2014, doi:10.1016/j.chemgeo.2014.04.002
  10. Chauvel C, Garçon M, Bureau S, Besnault A, Jahn B-, Ding Z. Constraints from loess on the Hf–Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters. 2014; 388:48-58, doi:10.1016/j.epsl.2013.11.045
  11. Chavrit D, Humler E, Grasset O. Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system. Earth and Planetary Science Letters. 2014; 387:229-39, doi:10.1016/j.epsl.2013.11.036
  12. Coogan LA. Treatise on Geochemistry The Lower Oceanic Crust. Elsevier;  2014. p. 497-541.
  13. Diaz-Bravo BA, Gomez-Tuena A, Ortega-Obregon C, Perez-Arvizu O. The origin of intraplate magmatism in the western Trans-Mexican Volcanic Belt. Geosphere. 2014; 10(2):340-73, doi:10.1130/GES00976.1
  14. Dick HJ, Zhou H. Ocean rises are products of variable mantle composition, temperature and focused melting. Nature Geoscience. 2014; 8(1):68-74, doi:10.1038/ngeo2318
  15. Diekema AR, Wesolek A, Walters CD. The NSF/NIH Effect: Surveying the Effect of Data Management Requirements on Faculty, Sponsored Programs, and Institutional Repositories. The Journal of Academic Librarianship. 2014. doi:10.1016/j.acalib.2014.04.010
  16. Escuder-Viruete J, Castillo-Carrión M, Pérez-Estaún A. Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc. Lithos. 2014, doi:10.1016/j.lithos.2014.03.013
  17. Falloon TJ, Meffre S, Crawford AJ, Hoernle K, Hauff F, Bloomer SH, et al. Cretaceous fore-arc basalts from the Tonga arc: Geochemistry and implications for the tectonic history of the SW Pacific. Tectonophysics. 2014, doi:10.1016/j.tecto.2014.05.007
  18. Gale A, Langmuir CH, Dalton CA. The Global Systematics of Ocean Ridge Basalts and their Origin. Journal of Petrology. 2014; 55(6):1051-82, doi:/10.1093/petrology/egu017
  19. Gomez-Tuena A, Diaz-Bravo B, Vazquez-Duarte A, Perez-Arvizu O, Mori L. Andesite petrogenesis by slab-derived plume pollution of a continental rift. Geological Society, London, Special Publications. 2014; 385(1):65-101, doi:10.1144/SP385.4
  20. Harvey J, Garrido C, Savov I, Agostini S, Padrón-Navarta JA, Marchesi C, et al. 11B-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology. 2014; 376, doi:10.1016/j.chemgeo.2014.03.015
  21. Hazen RM. Data-driven abductive discovery in mineralogy. American Mineralogist. 2014; 99(11-12):2165-70, doi:10.2138/am-2014-4895
  22. Herbrich A, Hoernle K, Werner R, Hauff F, v.d. Boogard P, Garbe-Schönberg D. Cocos Plate Seamounts offshore NW Costa Rica and SW Nicaragua: Implications for large-scale distribution of Galápagos plume material in the upper mantle. Lithos. 2014, doi:10.1016/j.lithos.2014.10.014
  23. Hofmann AW. 3.3 – Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 67-101, doi:10.1016/B0-08-043751-6/02123-X
  24. Iwamori H, Nakamura H. Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Research. 2014, doi:10.1016/j.gr.2014.09.003
  25. Jochum KP, Enzweiler J. 15.3 – Reference Materials in Geochemical and Environmental Research. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 43-70, doi:10.1016/B978-0-08-095975-7.01403-0
  26. Kakar MI, Kerr AC, Mahmood K, Collins AS, Khan M, McDonald I. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos. 2014, doi:10.1016/j.lithos.2014.05.029
  27. van Keken PE, Ballentine CJ, Hauri EH. Treatise on Geochemistry Convective Mixing in the Earth’s Mantle. Elsevier;  2014. p. 509-25.
  28. Kelemen PB, Hanghøj K, Greene AR. 4.21 – One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 749-806, doi:10.1016/B0-08-043751-6/03035-8
  29. Kelley KA. Inside Earth Runs Hot and Cold. Science. 2014; 344(6179):51-2, doi:10.1126/science.1252089.
  30. Kerr AC. Treatise on Geochemistry Oceanic Plateaus. Elsevier;  2014. p. 631-67, doi:10.1016/B0-08-043751-6/03033-4
  31. Koepke J. Encyclopedia of Marine Geosciences Gabbro. Harff J, Meschede M, Petersen S, Thiede J, editors. Dordrecht: Springer Netherlands;  2014.
  32. Larrea P, Gale C, Ubide T, Widom E, Lago M, Franca Z. Magmatic Evolution of Graciosa (Azores, Portugal). Journal of Petrology. 2014; 55(11):2125-54, doi:10.1093/petrology/egu052
  33. Lee C-. Treatise on Geochemistry Physics and Chemistry of Deep Continental Crust Recycling. Elsevier;  2014. p. 423-56.
  34. Li X, Mo X, Bader T, Scheltens M, Yu X, Dong G, et al. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: petrogenesis and geodynamic implications. Journal of Asian Earth Sciences. 2014, doi:10.1016/j.jseaes.2014.07.017
  35. Machida S, Orihashi Y, Magnani M, Neo N, Wilson S, Tanimizu M, et al. Regional mantle heterogeneity regulates melt production along the Réunion hotspot-influenced Central Indian Ridge, 2014, doi:10.2343/geochemj.2.0320
  36. Martin H, Moyen J-, Guitreau M, Blichert-Toft J, Le Pennec J-. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos. 2014; 198-199, doi:10.1016/j.lithos.2014.02.017
  37. McDonough WF. Treatise on Geochemistry Compositional Model for the Earth’s Core. Elsevier;  2014. p. 559-77, doi:10.1016/B978-0-08-095975-7.00215-1
  38. Melekestseva IY, Tret’yakov GA, Nimis P, Yuminov AM, Maslennikov VV, Maslennikova SP, et al. Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87´ N): Evidence for phase separation and magmatic input. Marine Geology. 2014, doi:10.1016/j.margeo.2013.12.013
  39. Pernet-Fisher JF, Howarth GH, Liu Y, Barry PH, Carmody L, Valley JW, et al. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology. 2014; 167:1-17, doi: 10.1016/j.margeo.2013.12.013
  40. Rubin K. Encyclopedia of Marine Geosciences Mid-Ocean Ridge Magmatism and Volcanism. Harff J, Meschede M, Petersen S, Thiede J, editors. Dordrecht: Springer Netherlands;  2014, doi:10.1007/978-94-007-6644-0_28-3
  41. Ryan JG, Chauvel C. Treatise on Geochemistry The Subduction-Zone Filter and the Impact of Recycled Materials on the Evolution of the Mantle. Elsevier;  2014. p. 479-508, doi:10.1016/B978-0-08-095975-7.00211-4
  42. Samuel H, King SD. Mixing at mid-ocean ridges controlled by small-scale convection and plate motion. Nature Geoscience. 2014; 7(8):602-5, doi:10.1038/ngeo2208
  43. Sandeman HA, Ootes L, Cousens B, Kilian T. Petrogenesis of Gunbarrel magmatic rocks: Homogeneous continental tholeiites associated with extension and rifting of Neoproterozoic Laurentia. Precambrian Research. 2014; 252:166-79, doi:10.1016/j.precamres.2014.07.007
  44. Schenker FL, Burg J-, Kostopoulos D, Moulas E, Larionov A, von Quadt A. From Mesoproterozoic magmatism to collisional Cretaceous anatexis: Tectono-magmatic history of the Pelagonian Zone, Greece. Tectonics. 2014, doi:10.1002/2014TC003563
  45. Simon A, Yogodzinski GM, Robertson K, Smith E, Selyangin O, Kiryukhin A, et al. Evolution and Genesis of Volcanic Rocks from Mutnovsky Volcano, Kamchatka. Journal of Volcanology and Geothermal Research. 2014, doi:10.1016/j.jvolgeores.2014.09.003
  46. Søager N, Holm PM, Thirlwall MF. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina. Lithos. 2014;doi:10.1016/j.lithos.2014.11.026
  47. Staudigel H. Treatise on Geochemistry Chemical Fluxes from Hydrothermal Alteration of the Oceanic Crust. Elsevier;  2014. p. 583-606.
  48. Uno MA, Iwamori H, Nakamura H, Yokoyama TE, Ishikawa TS, Tanimizu MA. Elemental transport upon hydration of basic schists during regional metamorphism: Geochemical evidence from the Sanbagawa metamorphic belt, Japan. Geochemical Journal. 2014; 48(1):29-49, doi:10.2343/geochemj.2.0283
  49. White WM, Klein EM. Treatise on Geochemistry Composition of the Oceanic Crust. Elsevier;  2014. p. 457-96.
  50. Yang X-, Chen Y-, Hou K-, Liu S-, Liu J-. U–Pb zircon geochronology and geochemistry of Late Jurassic basalts in Maevatanana, Madagascar: Implications for the timing of separation of Madagascar from Africa. Journal of African Earth Sciences. 2014; 100:569-78, doi:10.1080/00206814.2014.977969
  51. Yu X. The Big data tool for seabed Petrogeochemistry research-PetDB and its Application in Geoscience. Advances in Earth Science. 2014; 29(2).
  52. Zou D, Liu Y, Hu Z, Gao S, Zong K, Xu R, et al. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia: Insights into the Paleo-Asian Ocean subduction-related melt/fluid–peridotite interaction. Geochimica et Cosmochimica Acta. 2014; 140:435-54, doi:10.1016/j.gca.2014.05.046