Number of Citations

EarthChem is continuously updating the citation lists for PetDB and EarthChem. Sometimes we find manuscripts that do not formally cite EarthChem or PetDB in the Reference section of the publication. For guidance on how to properly site EarthChem and PetDB please see this page.

To ensure that your manuscript is included in our citation list, we ask that you email your publications that cite any of EarthChem’s systems to Thank you!

PetDB: 2023

  1. Boulanger, M., & France, L., 2023, Cumulate formation and melt extraction from mush-dominated magma reservoirs: The melt flush process exemplified at mid-ocean ridges, Journal of Petrology. doi:10.1093/petrology/egad005
  2. Li, C., Smith, P., Bai, X., Tan, Q., Luo, G., Li, Q., Wang, J., Wu, L., Chen, F., Deng, Y., Hu, Z., Yang, Y., Tian, S., Lu, Q., Xi, H., Ran, C., & Zhang, S., 2023, Effects of carbonate minerals and exogenous acids on carbon flux from the chemical weathering of granite and basalt, Global and Planetary Change. doi:10.1016/j.gloplacha.2023.104053
  3. Hou, M., Xiong, F., Ma, C., Foulger, G., & Yu, S. (2023). Permian-Triassic Tethyan Orogeny along the Southern Eurasian Margin. Frontiers Media SA. 
  4. Ji, T., & Zeng, Z., 2023, Trace Element Evidence of Subduction-Modified Mantle Material in South Mid-Atlantic Ridge 18–21°S Upper Mantle, Journal of Marine Science and Engineering. doi:10.3390/jmse11020441
  5. Ma, C., Tang, Y., Ying, J., & Zhang, H., n.d., The phosphorus budget of the silicate Earth based on an updated estimate of the P/Nd ratio, Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB025384
  6. Sani, C., Sanfilippo, A., Peyve, A. A., Genske, F., & Stracke, A., 2023, Earth Mantle’s Isotopic Record of Progressive Chemical Depletion. AGU Advances. doi:10.1029/2022AV000792
  7. She, J.-X., Kubik, E., Li, W., & Moynier, F., 2023, Stable Sn isotope signatures of Mid-ocean ridge basalts. Chemical Geology. doi:10.1016/j.chemgeo.2023.121347
  8. Tu, C., Chen, C., Liang, Q., Hu, Z., & Tao, C., 2023, The upper-mantle density variation beneath the South Atlantic Ocean and its implications for hotspots and large igneous provinces, Tectonophysics. doi:10.1016/j.tecto.2023.229755
  9. Woelki, D., Salters, V., Beier, C., Dick, H., Koepke, J., & Romer, R., 2023, Shallow recycling of lower continental crust: The Mahoney Seamount at the Southwest Indian Ridge, Earth and Planetary Science Letters. doi:10.1016/j.epsl.2022.117968
  10. Zhang, H., Yan, Q., Li, C., & Shi, X., 2023, The involvement of deep plume-related materials in the South Atlantic Ocean asthenosphere as indicated by isotopic independent component analysis of basalts, International Journal of Earth Sciences. doi:10.1007/s00531-023-02298-2
  11. Zhang, R., Cheng, Z., Zhang, Z., Chen, Z., Ernst, R., & Santosh, M., n.d., Formation of Tarim Large Igneous Province and strengthened lithosphere revealed through Machine Learning. Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB025772
  12. Zhao, K., Xu, X., Bachmann, O., Nan, T., & Xia, Y., 2023, H2O-Controlled Eruptive Filtering on the Bimodality of Continental Volcanism across Tectonic Settings. Journal of Petrology. doi:10.1093/petrology/egad006

PetDB: 2022

    1. Agranier, A., Patriat, M., Mortimer, N., Collot, J., Etienne, S., Durance, P., & Gans, P., 2022, Oligo-miocene subduction-related volcanism of the loyalty and three Kings ridges, SW Pacific: A precursor to Tonga-Kermadec arc, Lithos. doi:10.1016/j.lithos.2022.106981
    2. Alférez, G.H., Esteban, O.A., Clausen, B.L., Martinez Ardila, A. M., 2022,Automated machine learning pipeline for geochemical analysis, Earth Science Informatics, doi: 10.1007/s12145-022-00821-8
    3. Aktağ, A., Sayit, K., Peters, B. J., Furman, T., & Rickli, J., 2022, Trace element and Sr-Nd-Hf-Pb isotopic constraints on the composition and evolution of eastern Anatolian sub-lithospheric mantle, Lithos doi:10.1016/j.lithos.2022.106849
    4. Andrews, B. J., Costa, F., Venzke, E., & Widiwijayanti, C., 2022, Databases in Volcanology, Bulletin of Volcanology, doi:10.1007/s00445-022-01597-x
    5. Agra, N. A., Elburg, M. A., & Vorster, C., 2023, Constraints on Paleoproterozoic crustal growth from Birimian Supergroup lavas of the Bui belt (Ghana) in the West African Craton, Precambrian Research. doi: 10.1016/j.precamres.2022.106926
    6. Aulbach, S., Stachel, T., 2022 Evidence for oxygen-conserving diamond formation in redox-buffered subducted oceanic crust sampled as eclogite. Nat Commun, doi: 10.1038/s41467-022-29567-z
    7. Bachmann, O., Malone, S., Vidale, J., Bergantz, G., Creager, K., Booker, J., Sisson, T., Pallister, J., Moran, S., Denliger, R., Levander, A., Brown, J., Beroza, G., DeCelles, P., Kapp, P., Beck, S., Derry, L., Schopka, H., Dick, H., … Kirby, S., (n.d.), List of White Papers, alphabetical by surname of first author
    8. Boone, S., Dalton, H., Prent A., et al., 2022, AusGeochem: An Open Platform for Geochemical Data Preservation, Dissemination and Synthesis, Geostandards and Geoanalytical Research, doi:10.1111/ggr.12419
    9. Butek, J., Grégoire, M., Spišiak, J., Duchene, S., & Kopáčik, R., 2022, On the origin of vesuvianite-rich rodingites from the Western Carpathians, Slovakia. Lithos. doi:10.1016/j.lithos.2022.106902
    10. Carley, T.L., Bell, E.A., Miller, C.F. , Claiborne, L.L. , Hunt, A., Kirkpatrick, H.M., Harrison, T.M. , 2022, Zircon-modeled melts shed light on the formation of Earth’s crust from the Hadean to the Archean. Geology, doi:10.1130/G50017.1
    11. Chen, G., Cheng, Q., Lyons, T. W., Shen, J., Agterberg, F., Huang, N., & Zhao, M., 2022, Reconstructing Earth’s atmospheric oxygenation history using machine learning, Nature Communications. doi: 10.1038/s41467-022-33388-5
    12. Chen, Z., Chen, J., Tamehe, L. S., Zhang, Y., Zeng, Z., Zhang, T., Shuai, W., & Yin, X., 2023, Light Fe isotopes in arc magmas from cold subduction zones: Implications for serpentinite-derived fluids oxidized the sub-arc mantle, Geochimica et Cosmochimica Acta. doi: 10.1016/j.gca.2022.12.005
    13. Chilson-Parks, B., Calabozo, F., Saal, A., Wang, Z., Mallick, S., Petrinovic, A., Frey, F., 2022, (accepted), Unraveling the signature of metasomatized subcontinental lithospheric mantle in the basaltic magmatism of the Payenia volcanic province, Argentina, G-Cubed , doi:10.1029/2021GC010071
    14. Clague, D. A., Zierenberg, R. A., Paduan, J. B., Caress, D. W., Cousens, B. L., Dreyer, B. M., Davis, A. S., McClain, J., & Ross, S. L., 2022, Emplacement and impacts of lava flows and intrusions on the sediment-buried Escanaba Segment of the Gorda mid-ocean ridge. Journal of Volcanology and Geothermal Research. doi: 10.1016/j.jvolgeores.2022.107701
    15. Clemens, J. D., Bryan, S. E., Mayne, M. J., Stevens, G., & Petford, N., 2022, How are silicic volcanic and plutonic systems related? Part 1: A review of geological and geophysical observations, and insights from igneous rock chemistry, Earth-Science Reviews. doi:10.1016/j.earscirev.2022.104249
    16. Condie, K. C., Puetz, S. J., Spencer, C. J., & Roberts, N. M. W., 2022, Secular compositional changes in hydrated mantle: The record of arc-type basalts, Chemical Geology, doi: 10.1016/j.chemgeo.2022.121010
    17. Dauphas, N., Nie, N., Blanchard, M., et al., 2022, The Extent, Nature, and Origin of K and Rb Depletions and Isotopic Fractionations in Earth, the Moon, and Other Planetary Bodies, Planet. Sci. J., doi:10.3847/PSJ/ac2e09
    18. Davies, G.F., 2022, Some Chemical Clarifying. In: Stories from the Deep Earth. Springer, Cham. doi:10.1007/978-3-030-91359-5_14
    19. Díaz-Bravo, B., Ortega-Obregón, C., Schaaf, P., Solís-Pichardo, G., 2022, Evidence of hydration of the peridotite mantle wedge recorded in low-CaO olivines from Los Tuxtlas Volcanic Field, Veracruz, México, Lithos, doi:10.1016/j.lithos.2022.106638
    20. DiMaggio, E., Mana, S., and VanHazinga, C., 2022, EARThD: an effort to make East African tephra geochemical data available and accessible, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13330, doi:10.5194/egusphere-egu22-13330
    21. Ding, Y., Jin, X., Li, X., Li, Z., Liu, J., Wang, H., Zhu, J., Zhu, Z., & Chu, F., 2022, Magnesium isotopic composition of back-arc basin lavas and its implication for the recycling of serpentinite-derived fluids, Marine Geology. doi:10.1016/j.margeo.2022.106921
    22. Garbe-Schönberg, D., Koepke, J., Müller, S., Mock, D., Müller, T., 2022, A reference section through fast-spread lower oceanic crust, Wadi Gideah, Samail Ophiolite (Sultanate of Oman): Whole rock geochemistry, Journal of Geophysical Research: Solid Earth, doi:10.1029/2021JB022734
    23. Grambling, N., 2022, Natural, Experimental, and Educational Explorations of the Interiors of Terrestrial Planetary Bodies, Doctoral Dissertations.
    24. Grassa, F., Viveiros, F., Mckormick-Kilbride, B., Bonifaci, M., Ilynskaya, E., Iribarren, I., Luengo, N., Moreno, L., Manson, E., Moune, S., Pfeffer, M. A., Silva, C., Burton, M., Caliro, S., Muro, A. di, Esse, B., Labazuy, P., Liotta, M., Liuzzo, M., Moretti, R., Murphy, A., Salerno, G., Torres, P., Varna, A., Cacciola, L., Messina, G., n.d., Programme: H2020 Project number: 731070 EUROVOLC European Network of Observatories and Research Infrastructure for Volcanology Deliverable Report D5.3: EPOS geochemical database participation: Integration of geochemical dataset of volcanic gases in atmosphere not implemented in EPOS-IP.
    25. German, C. R., Reeves, E. P., Türke, A., Diehl, A., Albers, E., Bach, W., Purser, A., Ramalho, S. P., Suman, S., Mertens, C., Walter, M., Ramirez-Llodra, E., Schlindwein, V., Bünz, S., & Boetius, A., 2022, Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge, Nature Communications. doi: 10.1038/s41467-022-34014-0
    26. He, Y., Zhou, Y., Wen, T., Zhang, S., Huang, F., Zou, X., Ma, X., Zhu, Y., 2022, A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications, Applied Geochemistry, doi:10.1016/j.apgeochem.2022.105273
    27. Hin, R. C., Hibbert, K. E. J., Chen, S., Willbold, M., Andersen, M. B., Kiseeva, E. S., Wood, B. J., Niu, Y., Sims, K. W. W., & Elliott, T., 2022, The influence of crustal recycling on the molybdenum isotope composition of the Earth’s mantle, Earth and Planetary Science Letters, doi:10.1016/j.epsl.2022.117760
    28. Holycross, M., Cottrell, E., 2022, Experimental quantification of vanadium partitioning between eclogitic minerals (garnet, clinopyroxene, rutile) and silicate melt as a function of temperature and oxygen fugacity. Contrib Mineral Petrol, doi:10.1007/s00410-022-01888-8
    29. Huang, H., Xiang, F., Zhang, D., Guo, Y., Yang, Q., & Ding, L., 2022, New evidence from heavy minerals and detrital zircons in Quaternary fluvial sediments for the evolution of the upper Yangtze River, South China, Quaternary Research. doi:10.1017/qua.2022.58
    30. Hu, H., Yu, X., Han, X., Wang, Y., Qiu, Z., Zong, T., Liu, J., Li, H., & Xu, X., 2022, Prospective pyroxenite–peridotite mixed mantle source for the northern Carlsberg Ridge, Lithos. doi:10.1016/j.lithos.2022.106980
    31. Jordan, M., Pilet, S., & Brenna, M.,2022, Off-Rift Axis Channelized Melt and Lithospheric Metasomatism along Mid-Ocean Ridges – a Case Study from Iceland on the Limits of Melt Channelling. Journal of Petrology. doi:10.1093/petrology/egac052
    32. Klöcking, M., Wyborn, L., Lehnert, K., Ware, B., Prent, A. M., Profeta, L., Kohlmann, F., Noble, W., Bruno, I., Lambart, S., Ananuer, H., Barber, N. D., Becker, H., Brodbeck, M., Deng, H., Deng, K., Elger, K., Franco, G. de S., Gao, Y., Ghasera, K. M., Hezel, D. C., Huang, J., Kerswell, B., Koch, H., Lanai, A. W., Matt, G., Martínez-Villegas, N., Yobo, L. N., Redaa, A., Schäfer, W., Swing, M. R., Taykore, R. J. M., Traun, M. K., Whelan, J., Zhou, T., 2022, Community recommendations for geochemical data, services and analytical capabilities in the 21st century. doi:10.31223/X5H07Q
    33. Kwayisi, D., Elburg, M., Lehmann,J., 2022 Preserved ancient oceanic lithosphere within the Buem structural unit at the eastern margin of the West African Craton, Lithos, doi:10.1016/j.lithos.2021.106585
    34. Labidi, J., 2022,The origin of nitrogen in Earth's mantle: Constraints from basalts 15N/14N and N2/3He ratios,Chemical Geology, doi:10.1016/j.chemgeo.2022.120780
    35. Labidi, J., Dottin, J., Clog, M., Hemond, C., Cartigny, P., 2022, Near-zero 33S and 36S anomalies in Pitcairn basalts suggest Proterozoic sediments in the EM-1 mantle plume,Earth and Planetary Science Letters, doi:10.1016/j.epsl.2022.117422
    36. Lang, O. I., & Lambart, S., 2022, First-row transition elements in pyroxenites and peridotites: A promising tool for constraining the mantle source mineralogy, Chemical Geology. doi: 10.1016/j.chemgeo.2022.121137
    37. Liang, Y., 2022, Mixing Loops, Mixing Envelopes, and Scattered Correlations among Trace Elements and Isotope Ratios Produced by Mixing of Melts Derived from a Spatially and Lithologically Heterogenous Mantle, Journal of Petrology. doi:10.1093/petrology/egac092
    38. Liao, R., Zhu, H., Li, C., Sun, W., 2022, Geochemistry of mantle source during the initial expansion and its implications for the opening of the South China Sea, Marine Geology, doi:10.1016j.margeo.2022.106798
    39. Ligi, M., Cuffaro, M., Muccini, F., & Bonatti, E., 2022, Generation and evolution of the oceanic lithosphere in the North Atlantic. La Rivista Del Nuovo Cimento, doi:10.1007/s40766-022-00035-0
    40. Li C, Wang G, Yan S and Du D (2022) Geochemical Analogy Viscosity of MidOcean Ridge Basalt as an Indicator for Determining the Location of Seafloor Hydrothermal Fields? Front. Earth Sci. doi:10.3389/feart.2022.951553
    41. Liu C.-Z., Dick, H. J. B., Mitchell, R. N., Wei, W., Zhang, Z.-Y., Hofman, A. W., Yang, J.-F., Li, Y., 2022, Archean Cratonic Mantle Recycled at a Mid-Ocean Ridge, Science Advances, doi:10.1126/sciadv.abn6749
    42. Liu, B., & Shi, J., 2022, A Machine Learning-Based Approach to Discriminating Basaltic Tectonic Settings, International Journal of Computational Intelligence and Applications, doi: 10.1142/S1469026822500122
    43. Liu, J., Tao, C. Zhou, J., et al., 2022, Water enrichment in the mid-ocean ridge by recycling of mantle wedge residue, Earth and Planetary Science Letters, doi: 10.1016/j.epsl.2022.117455
    44. Liu, X., Zhang, Q., Zhange, C., 2022, Identification of the Original Tectonic Setting for Oceanic Andesite Using Discrimination Diagrams: An Approach Based on Global Geochemical Data Synthesis, Journal of Earth Sci., doi: 10.1007/s12583-021-1507-y
    45. Ma, H., Xu, L-J., Shen, J., Liu, S-A., Li, S., 2022, Chromium isotope fractionation during magmatic processes: Evidence from Mid-ocean ridge basalts, Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2022.04.018
    46. Martínez-Serrano, R. G., Valadez-Cabrera, S.-N., Roberge, J., & Cristiani-Solís, C. G., 2022, Origin of bimodal rear-arc volcanism, Trans-Mexican Volcanic Belt eastern sector: Geochemical and isotopic evidence from the Quaternary Xihuingo-La Paila Volcanic Field. Geological Journal, doi:10.1002/gj.4390
    47. Matsuno, S., Uno, M., Okamoto, A. et al., 2022, Machine-learning techniques for quantifying the protolith composition and mass transfer history of metabasalt. Sci Rep., doi:10.1038/s41598-022-05109-x
    48. Menke, W. (2022). Chapter 2—Systematic explorations of a new dataset. In W. Menke (Ed.), Environmental Data Analysis with MatLab® or Python (Third Edition), Academic Press, doi:10.1016/B978-0-323-95576-8.00004-0
    49. Mougel, B., Agranier, A., Gente, P., & Hemond, C., 2022, 320,000 years of interaction between a fast-spreading ridge and nearby seamounts monitored using major, trace and isotope composition data from oceanic basalts: Zoom at 15.6°N on the East Pacific Rise, Data in Brief, doi: 10.1016/j.dib.2022.108550
    50. Ning, W., Kusky, T., Wang, L., & Huang, B., 2022, Reply to Zou et al.: Neoarchean eclogite-facies oceanic crust in the North China Craton, Retrieved August 29, 2022, doi: 10.1073/pnas.2210169119
    51. Ogungbuyi,P., Janney, P., Harris, C., 2022, Carbonatite, aillikite and olivine melilitite from Zandkopsdrift, Namaqualand, South Africa: Constraints on the origin of an unusual lamprophyre-dominated carbonatite complex and the nature of its mantle source, Lithos, doi:10.1016/j.lithos.2022.106678
    52. Owona, S., Schulz, B., Minyem, D., Ratschbacher, L., Chako Tchamabe, B., Bosco Olinga, J., Mvondo Ondoa, J., Ekodeck, G., 2022, Eburnean/Trans-Amazonian orogeny in the Nyong complex of southwestern Cameroon: Meta-basite geochemistry and metamorphic petrology,Journal of African Earth Sciences, doi: 10.1016/j.jafrearsci.2022.104515
    53. Özkan, M., Çelik, Ö. F., Çörtük, R. M., Topuz, G., Zack, T., & Çubukçu, E., 2022, Early–Middle Jurassic metamorphic and non-metamorphic supra-subduction zone ophiolite fragments in a Late Cretaceous ophiolitic mélange (northern Turkey): Implications for long-lived and supra-subduction zone ophiolite formation, International Journal of Earth Sciences, doi:10.1007/s00531-022-02235-9
    54. Pandey, A., 2022, Geochemical evidence for a widespread Paleoproterozoic continental arc-back-arc magmatism in the Lesser Himalaya during the Columbia supercontinent assembly, Precambrian Research, doi:10.1016/j.precamres.2022.106658
    55. Pang, F., Liao, J., Ballmer, M., Li, L., 2022, Plume-ridge interactions: Ridge 1 suction versus plate drag, Solid Earth Discussions, doi:10.5194/se-2022-20
    56. Payre, V. Dasgupta,R, 2022, Effects of Phosphorus on Partial Melting of the Martian Mantle and Compositions of the Martian Crust,Geochimica et Cosmochimica Acta, doi: 10.1016/j.gca.2022.03.034
    57. Portner, R., Dreyer, B., Claugue, D., Daczko, Castillo, P., 2022, Oceanic zircon records extreme fractional crystallization of MORB to rhyolite on the Alarcon Rise mid-ocean ridge, J Petrology, doi: 10.1093/petrology/egac040
    58. Roy, S., Bandyopadhyay, D., Morishita, T., Dhar, A., Koley, M., Chattopadhaya, S., Karmakar, A., Ghosh, B., 2022, Microtextural evolution of chrome spinels in dunites from Mayodia ophiolite complex, Arunachal Pradesh, India: Implications for a missing link in the “two-stage” alteration mechanism, Lithos,doi: 10.1016/j.lithos.2022.106719
    59. Tang, Q., Li, C., Bao, Y., Bao, J., Liu, C., Li, Z., Song, H., & Zhang, Y., 2022, Origin of highly variable and unusually low δ7Li in mineral separates from ultramafic intrusive rocks in a convergent tectonic setting in the Tibetan plateau, Chemical Geology. doi: 10.1016/j.chemgeo.2022.121133
    60. Taracsák, Z., Longpré, M-A., Tartèse, R., Burgess, R., Edmonds, M., Hartley, M., 2022, Highly oxidising conditions in volatile-rich El Hierro magmas: implications for ocean island magmatism, J. Petrol, doi: 10.1093/petrology/egac011
    61. Wang, S., Zhang, G., 2022, Geochemical constraints on source nature and recycled oceanic crust in the mantle of the Celebes Sea, Lithos, doi:10.1016/j.lithos.2022.106685
    62. Wang, W., Chen, L., Dong, Y., Kelley, K. A., Chu, F., Zhou, B., Gong, B., & Zhang, J., 2022, Development of major element proxies for magmatic H2O content in oceanic basalts, Chemical Geology, doi:10.1016/j.chemgeo.2022.121068
    63. Wang, Z-Z., Liu, S-A., Rudnick, R., Teng, F-Z., Wang, S-J., Haggerty, S., 2022, Zinc isotope evidence for carbonate alteration of oceanic crustal protoliths of cratonic eclogites,
      Earth and Planetary Science Letters, doi:10.1016/j.epsl.2022.117394
    64. Wu, Y., Pena, L. D., Anderson, R. F., Hartman, A. E., Bolge, L. L., Basak, C., Kim, J., Rijkenberg, M. J. A., de Baar, H. J. W., & Goldstein, S. L., 2022, Assessing neodymium isotopes as an ocean circulation tracer in the Southwest Atlantic. Earth and Planetary Science Letters. doi: 10.1016/j.epsl.2022.117846
    65. Xu, L.-J., & Liu, S.-A., 2023, Uncovering the redox state and S species of subduction zone fluids from Zn isotope systematics of eclogites in Northern Qilian and Southwestern Tianshan, Lithos. doi: 10.1016/j.lithos.2022.106979
    66. Xu, Y., Liu, C-Z., Lin, W., Shi, X-F., 2022, Ancient depletion signals in lherzolites from forearc region: Constraints from Lu-Hf isotope compositions, Geoscience Frontiers, doi:10.1016/j.gsf.2021.101259
    67. Xu, Y., Yan, Q., Shi, X., Jichao, Y., Deng, X., Xu, W., Jing, C., 2022, Discovery of Late Mesozoic volcanic seamounts at the ocean-continent transition zone in the Northeastern margin of South China Sea (SCS) and its tectonic implication, Gondwana Research, doi:10.1016/
    68. Yan, Y., Zhao, Y., Xue, C. et al., 2022, Magma evolution and mineralization of the Baixintan magmatic Ni–Cu sulfide deposit in Eastern Tianshan, Northwestern China. Int J Earth Sci (Geol Rundsch) doi:10.1007/s00531-022-02169-2
    69. Yu, X., Liu, Z., Wu, J., An, Y.-J., & Shi, J., 2022, Iron isotopic variations in basalts from oceanic crust due to low-temperature seawater alteration, Marine Geology. doi:10.1016/j.margeo.2022.106949
    70. Yu, X., Liu, Z., Zeng, G., Cao, W., Meas, R., Hoang, L. V., & Sang, P. N., 2022, Mantle plume–stagnant slab interaction controls the generation of a mixed mantle source for continental intraplate basalts, Lithos, doi: 10.1016/j.lithos.2022.106795
    71. Zeng, Z., Li, X., Zhang, Y., Qi, H., 2022, Oxygen and Magnesium Isotope Systematics of Volcanic Rocks in the Okinawa Trough: Implications for Plate Subduction Studies. J. Mar. Sci. Eng., doi: 10.3390/jmse10010040
    72. Zhang, S., Jia, Y., Xu, H., Wen, Y, Wang, D., Wang, X., 2022, DeepShovel: An Online Collaborative Platform for Data Extraction in Geoscience Literature with AI Assistance, arXiv preprint arXiv:2202.10163
    73. Zhang, S., Jia, Y., Xu, H., Wang, D., Li, T. J., Wen, Y., Wang, X., & Zhou, C., 2022, KnowledgeShovel: An AI-in-the-Loop Document Annotation System for Scientific Knowledge Base Construction, arXiv.
    74. Zhao, K., Dai, L.-Q., Fang, W., Zheng, Y.-F., Zhao, Z.-F., Zheng, F., 2022, Decoupling between Mg and Ca isotopes in alkali basalts: Implications for geochemical differenciation of subduction zone fluids, Chemical Geology, In Press, Journal Pre-proof, doi:10.1016/j.chemgeo.2022.120983
    75. Zhou, H., Qian, S., & Dick, H., 2022, Explosive Alkaline Volcanism on the SW Indian Ridge, [Preprint], In Review, doi: 10.21203/
    76. Zhou, X., Zheng, J.-P., Huang, Z.-B., Li, Z.-Y., Zhang, W.-Q., Zheng, H.-D., Xiong, Q., & Dai, H.-K., 2023, Ultra-depleted melt product preserved in the Ladong ophiolitic peridotites of the North Qilian Orogenic Belt, Northern Tibet, Lithos. doi: 10.1016/j.lithos.2022.106985
    77. Zou, H. Li,Y., Huang, C-C., Said,N., Jiang,X-W., Liu,H., Li, M., Chen,H-F., Liu,C-M., Lan, Z-W., 2022, Ca. 815 Ma intra-plate granitoids and mafic dykes from Emeishan pluton in the western Yangtze Block, SW China: A record of rifting during the breakup of Rodinia, Precambrian Research, doi: 10.1016/j.precamres.2022.106569

PetDB: 2021

  1. Akizawa, N., Ohara, Y., Okino, K. et al.,2021, Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion. Prog Earth Planet Sci, doi:10.1186/s40645-021-00454-3
  2. Akizawa,N., Yamaguchi, A., Tani, K., Ishikawa,A., Fujita, R., Choi, S., 2021, Highly refractory dunite formation at Gibbs Island and Bruce Bank, and its role in the evolution of the circum-Antarctic continent. The Canadian Mineralogist doi: 10.3749/canmin.2100030
  3. Barnes, S., Williams, M., Smithies, R., Hanski, E., Lowrey, J., 2021,Trace element contents of mantle-derived magmas through time, Journal of Petrology, doi: 10.1093/petrology/egab024
  4. Belgrano, T., Tollan, P., Marxer, F., Diamond, L., 2021, Paleobathymetry of submarine lavas in the Samail and Troodos ophiolites: Insights from volatiles in glasses and implications for hydrothermal systems, JGR Solid Earth, doi:10.1029/2021JB021966
  5. Beunon, H., Mattielli, N., Doucet, L., Moine, B., Debret, B.,2021
    Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling, Earth-Science Reviews, doi:10.1016/j.earscirev.2020.103174
  6. Brantley, S., Wen, T., Agarwal, D., Catalano, J., Schroeder, P., Lehnert, K., Varadharajan, C., Pett-Ridge, J., Engle, M., Castronova, A., Hooper, R., Ma, X., Jin, L., McHenry, K., Aronson, E., Shaughnessy, A., Derry, L., Richardson, J., Bales, J., Pierce, E., 2021, The future low-temperature geochemical data-scape as envisioned by the U.S. geochemical community, Computers & Geosciences,doi: 10.1016/j.cageo.2021.104933
  7. Brown, J. R., Cooper, G. F., Nowell, G. M., Macpherson, C. G., Neill, I., Prytulak, J., 2021, Isotopic Compositions of Plagioclase From Plutonic Xenoliths Reveal Crustal Assimilation Below Martinique, Lesser Antilles Arc., Frontiers in Earth Science, 9 . p. 682583
  8. Chen, Y., Liu, Y., Sue, Q., Gao, Y., Castillo, P., 2021, An iron isotope perspective on back-arc basin development: 2 Messages from Mariana Trough basalts, EPSL, (accepted article)
  9. Chen, Z., Zeng, Z.,Tamehe, L., Wang, X., Chen, K. Yin, X., Yang, W., Haiyan Qi,H., 2021, Magmatic sulfide saturation and dissolution in the basaltic andesitic magma from the Yaeyama Central Graben, southern Okinawa Trough, Lithos, doi: 10.1016/j.lithos.2021.106082
  10. Clemens, J.D., Stevens, G. & Mayne, M.J.,2021, Do arc silicic magmas form by fluid-fluxed melting of older arc crust or fractionation of basaltic magmas?. Contrib Mineral Petrol, doi:10.1007/s00410-021-01800-w 
  11. Deasy, R., Wintsch, R., Meyer, R., 2021, Bulk composition of fast-spreading oceanic crust: insights from the lower cumulates of the East Pacific Rise and from Cocos-Nazca Rift basalts, Hess Deep, Journal of Petrology, doi:10.1093/petrology/egab019
  12. Dong, Z., Tao, C., Liang, J., Liao, S., Li, W., Zhang, G., Cao, Z., 2021, Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform, Minerals, doi: 10.3390/min11020175
  13. Duan, W-Y., Li, X-P., Sun, G-M., et al., 2021,Rodingitization records from ocean-floor to high pressure metamorphism in the Xigaze ophiolite, southern Tibet, Gondwana Research, doi: 10.1016/
  14. Fang, T., Huang,J.,Zartman, R.,2021, Lead isotope evolution during the multi-stage core formation, Solid Earth Sciences, doi:10.1016/j.sesci.2021.11.001
  15. Fullea, J., Lebedev, S., Martinec, Z., Celli, N., 2021, WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical-petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data, Geophysical Journal International, doi: 10.1093/gji/ggab094
  16. Füri, E., Portnyagin, M., Mironov, N., Deligny, C., Gurenko, A., Botcharnikov, R., Holtz, F., 2021, In situ quantification of the nitrogen content of olivine-hosted melt inclusions from Klyuchevskoy volcano (Kamchatka): Implications for nitrogen recycling at subduction zones, Chemical Geology, doi:10.1016/j.chemgeo.2021.120456
  17. Gambino, S., Armienti, P., Cannata, A., Del Carlo, P., Giudice, G., Giuffrida, G., Liuzzo, M., Pompilio, M., 2021, Chapter 7.3 Mount Melbourne and Mount Rittmann, Geological Society, London, Memoirs, doi: 10.1144/M55-2018-43
  18. Gard, M., 2021, Constraints on the thermal state of the continental lithosphere, PhD Thesis, University of Adelaide, 180p.
  19. Geldmacher, J., Werner, R., 2021, Azores-Biscay Rise and Bay of Biscay: A key area for the reconstruction, METEOR-Berichte, Cruise No. M176 (GPF 21-2_048) of the geodynamic evolution of the early North Atlantic
  20. Grambling, N. L., Dygert, N., Boring, B., Jean, M. M., & Kelemen, P. B. ,2021, Thermal history of lithosphere formed beneath fast spreading ridges: Constraints from the Mantle Transition Zone of the East Pacific Rise at Hess Deep and Oman Drilling Project, Wadi Zeeb, Samail ophiolite. Journal of Geophysical Research: Solid Earth, doi:10.1029/2021JB022696
  21. Guo, M., Korenaga, J., 2021, A halogen budget of the bulk silicate Earth points to a history of early halogen degassing followed by net regassing, PNAS, doi: 10.1073/pnas.2116083118
  22. Guo, P., Niu, Y.,Sun, P., Zhang, J., Chen, S., Duan, M., Gong, H., Wang, X, 2021,The nature and origin of upper mantle heterogeneity beneath
    the Mid-Atlantic Ridge 33-35°N: A Sr-Nd-Hf isotopic perspective, GCA, doi:10.1016/j.gca.2021.05.033
  23. Hardman, M., Stachel, T., Pearson, D., Cano, E., Stern, R., Sharp, Z., 2021, Characterising the distinct crustal protoliths of Roberts Victor Type I and II eclogites, Journal of Petrology, doi:10.1093/petrology/egab090
  24. Hoernle, K., Gill, J., Timm, C., Hauff, F., Werner, R., Garbe-Schoenberg, D., Gutjahr, M., 2021, Hikurangi Plateau subduction a trigger for Vitiaz arc splitting and Havre Trough opening (southwestern Pacific), Geology, doi:10.1130/G48436.1
  25. Hole, M., 2021, Antarctic Peninsula: petrology, Geological Society, London, Memeoirs, doi:10.1144/M55-2018-40
  26. Homrighausen, S., Hoernle, K., Wartho, J-A., Hauff, F., Werner,R., 2021, Do the 85°E Ridge and Conrad Rise form a hotspot track crossing the Indian Ocean?, Lithos, doi:10.1016/j.lithos.2021.106234
  27. Kim, S., Choi, S., 2012, Geochemical studies on the mantle source lithologies of late Cenozoic alkali basalts from Baengnyeong, Pyeongtaek, and Asan in the Korean Peninsula, Lithos, doi:10.1016/j.lithos.2021.106434
  28. Koepke, J., Feig, S., Berndt, J., Neave, D., 2021, Wet magmatic processes during the accretion of the deep crust of the Oman Ophiolite paleoridge: Phase diagrams and petrological records, Tectonophysics, doi: 10.1016/j.tecto.2021.229051
  29. Li, H., Arculus, R.J., Ishizuka, O. et al., 2021, Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development. Nat. Commun., doi:10.1038/s41467-021-21980-0
  30. Li, J., Huang, X-L., Li, X-H., Chu, F-Y., Zhu, J-H., Zhu, Z-M., Wang, H.,
    Anomalously hot mantle source beneath the Dragon Flag Supersegment of the Southwest Indian Ridge: New evidence from crystallisation temperatures of mid-ocean ridge basalts, Lithos, doi:10.1016/j.lithos.2021.106221
  31. Mutele, L., Misra, S., 2021 Geochemical evolution of the Lebowa Granite Pluton in western Bushveld Igneous Complex, South Africa: More insight into the evolution of bimodal A‐type granitoid, Geological Journal, doi: 10.1002/gj.4117
  32. Panter, K., Martin, A., 2021, West Antarctic mantle deduced from mafic magmatism, Geological Society, London, Memoirs, doi:10.1144/M56-2021-10
  33. Parolari, M., Gómez-Tuena, A., Errázuriz-Henao, C., Cavazos-Tovar, J., 2021, Orogenic andesites and their link to the continental rock cycle, Lithos, doi: 10.1016/j.lithos.2020.105958.
  34. Rollinson, H., Pease, V., 2021, Using geochemical data to understand geological processes, 2nd Edition, Cambridge University Press, doi: 10.1017/9781108777834
  35. Sanfilippo, A., Salters, V., Sokolov, S., Peyve, A., Stracke, A.,2021
    Ancient refractory asthenosphere revealed by mantle re-melting at the Arctic Mid Atlantic Ridge,Earth and Planetary Science Letters,doi: 10.1016/j.epsl.2021.116981
  36. Schiellerup, H., 2021, Seabed mineral deposits in European seas: Metallogeny and geological potential for strategic and critical raw materials, MINDeSea, D3-3 Metallogeny of hydrothermal deposits in European Waters,
  37. Schlesinger, W. H., Klein, E. M., Wang, Z., & Vengosh, A., 2021, Global Biogeochemical Cycle of Lithium. Global Biogeochemical Cycles, doi:10.1029/2021GB006999
  38. Skolotnev, S., Sanfilippo, A., Peyve, A., Nestola, Y., Sokolov, S., Petracchini, L., Dobrolyubova, K., Basch, V., Pertsev, A., Ferrando,C., Ivanenko,A., Sani, C., Razumovskiy, A., Muccini, F., Bich, A., Palmiotto, C., Brusilovsky, Y., Bonatti, E., Sholukhov,K., Cuffaro, M., Veklich, I., Dobrolyubov, V., Ligi, M., 2021, Seafloor spreading and tectonics at the Charlie Gibbs transform systen (52-53N, Mid Atlantic Ridge): Preliminary results from R/V A.N. Strakhov expedition S50, Ofioliti doi:10.4454/ofioliti.v46i1.539
  39. Stracke, A., 2021,A process-oriented approach to mantle geochemistry,Chemical Geology, doi:10.1016/j.chemgeo.2021.120350
  40. Suo, Y., Li, S., Cao, X., Liu, Y., Li, X., Sommerville, I., 2021, Mantle micro-block beneath the Indian Ocean and its implications on the continental rift-drift-collision of the Thethyan evolution, Earth-Science Reviews, doi:10.1016/j.earscirev.2021.103622
  41. Tang, Y-W., Chen, L., Zhao, Z-F., Zheng, Y-F., 2019, Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet,GSA Bulletin, doi: 10.1130/B35304.1
  42. Tong, F., Sun, W., Zartman, R., 2021, Effects of Planetesimal-Scale Evaporation on Pb Isotopic Evolution and Timing of the Last U/Pb Fractionation, ESSOAr, doi: 10.1002/essoar.10505825.1
  43. Wang, Y., Li, C., Li, W. et al. , 2021, Geology and geochemistry of the Tulaergen conduit-style magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China. Miner Deposita, doi:10.1007/s00126-021-01064-1
  44. Wang, Y., Wang, Q., Deng, J., Xue, S., Li, C., Ripley, E., 2021, Late Permian–Early Triassic mafic dikes in the southwestern margin of the South China block: Evidence for Paleo-Pacific subduction, Lithos, doi: 10.1016/j.lithos.2021.105994
  45. Ward, F., Rosenbaum, G.,Ubide, T., Wu, J., Caulfield, J., Sandiford, M., Gürer, D., 2021,Geophysical and geochemical constraints on the origin of Holocene intraplate volcanism in East Asia, Earth-Science Reviews, doi:10.1016/j.earscirev.2021.103624
  46. Wei, X., Shi, X-F., Xu, X-G., Castillo, P., Zhang, Y., Zhang, L., Zhang, H.,2021,Mid-Cretaceous Wake seamounts in NW Pacific originate from secondary mantle plumes with Arago hotspot composition, Chemical Geology, doi: 10.1016/j.chemgeo.2021.120632
  47. Xie, F., Tang, J., 2021,The Late Triassic-Jurassic magmatic belt and its implications for the double subduction of the Neo-Tethys Ocean in the southern Lhasa subterrane, Tibet, Gondwana Research, doi:10.1016/
  48. Xiong,L., Zhao,X., Zhao,S., Lin,H., Lin, Z., Zhu,Z.,Wang, Z., Li,M., Li,J., 2021,
    Formation of giant gold provinces by subduction-induced reactivation of fossilized, metasomatized continental lithospheric mantle in the North China Craton, Chemical Geology, doi:10.1016/j.chemgeo.2021.120362
  49. Xu, Y., Liu, C-Z., Lin, W., Shi,X-F., 2021, Ancient depletion signals in lherzolites from forearc region: Constraints from Lu-Hf isotope compositions,Geoscience Frontiers, doi:10.1016/j.gsf.2021.101259
  50. Xu, Y., Liu, C-Z., Shi, X-F, LIn, W., 2021, Petrogenesis of Eocene mafic and felsic magmas in the New Caledonia ophiolite: geochemistry and geochronology constraints, International Geology Review, doi:10.1080/00206814.2021.1978111
  51. Yan,Q., Shi,X., Yuan,L., Yan, S., Liu, Z., 2021,Tectono-magmatic evolution of the Philippine Sea Plate: A review, Geosystems and Geoenvironment, doi: 10.1016/j.geogeo.2021.100018
  52. Yang, A.Y., Langmuir, C.H., Cai, Y. et al., 2021, A subduction influence on ocean ridge basalts outside the Pacific subduction shield, Nat Commun, doi:10.1038/s41467-021-25027-2
  53. Zhang, H., Yan, Q., Li, C., Shi, X., Yang, Y., Wang, G., Hua, Q., Zhu, Z., Zhang, H., Zhao, R., Tracing material contributions from Saint Helena plume to the South Mid-Atlantic ridge system, EPSL,doi:10.1016/j.epsl.2021.117130
  54. Zhang, X., Gazel, E., Gaetani, G., Klein, F., 2021, Serpentinite-derived slab fluids control the oxidation state of the subarc mantle, Science Advances, doi:10.1126/sciadv.abj2515
  55. Zhang, Z., Liu, X., Xiao, W., Xu, J., Shi, Y., Gong, X., Hu, R., Liu, P., Song, Y., Xiao, Y., Zhang, Z., Li, R., Li, D., 2021, Geochemistry and Sr–Nd–Hf–Pb isotope systematics of late Carboniferous sanukitoids in northern West Junggar, NW China: Implications for initiation of ridge-subduction, Gondwana Research, doi:10.1016/
  56. Zhong, R., Deng, Y., Yu, C., 2021, Multi-layer perceptron-based tectonic discrimination of basaltic rocks and an application on the Paleoproterozoic Xiong’er volcanic province in the North China Craton, Compyters and Geoscience, doi:10.1016/j.cageo.2021.104717
  57. Zhou, J., Li, X., Wang, W.,Chen, X., 2021, Analysis of Environmental Controls on the Quasi-Ocean and Ocean CO2 Concentration by Two Intelligent Algorithms, Mathematical Problems in Engineering, doi:10.1155/2021/6666139
  58. Zhou, Y., Zhong, H., Zhu, W-G., Bai, Z-J., Li, C.,2021, Neoproterozoic protracted arc basaltic magmatism in the southern margin of the Yangtze Block, south China: New constraints from mafic-ultramafic intrusive rocks, Precambrian Research,doi: 10.1016/j.precamres.2021.106482
  59. Zhu, Z., Ding, Y., Li, Z., Dong, Y., Wang, H., Liu, J., Zhu, J., Li, X., Chu, F., Jin, X., 2021,Hafnium isotopic constraints on crustal assimilation in response to the tectono–magmatic evolution of the Okinawa Trough, Lithos, doi: 10.1016/j.lithos.2021.106352
  60. Zhu, S-Z., Huang, X-L., Yang, F., He, P-L., 2021, Petrology and geochemistry of early Permian mafic–ultramafic rocks in the Wajilitag area of the southwestern Tarim large Igneous Province: Insights into Fe-rich magma of mantle plume activity, Lithos, doi: 10.1016/j.lithos.2021.106355

PetDB: 2020

  1. Arokium, N., Block, K., Grossberg, M., Lehnert, K., 2020, PetDB Match-Maker: A Machine Learning/Artificial Intelligence Experiment,
    American Geophysical Union, Fall Meeting 2020, abstract #ED044-0003
  2. Basch, V, Sanfilippo, A., Sani, C., Ohara, Y., Snow, J., Ishizuka, O., Harigane, Y., Michibayashi, K., Sen, A., Akizawa, N., Okino, K., Fujii, M., Yamashita, H., 2020, Crustal accretion in a slow‐spreading back‐arc basin: Insights from the Mado Megamullion oceanic core complex in the Shikoku Basin, G-Cubed, doi:10.1029/2020GC009199
  3. Beniest, A., Schellar6t, W., 2020, A geological map of the Scotia Sea area constrained by bathymetry, geological data, geophysical data and seismic tomography models from the deep mantle, Earth Sci Rev, doi: 10.1016/j.earscirev.2020.103391
  4. Beunon, H., Mattielle, N., Doucet, L., Moine, L., Debret, B., 2020, Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling, Earth-Science Reviews, doi:10.1016/j.earscirev.2020.103174
  5. Bonnad, P., Bruand, E., Matzen, A., Jerram, M., Schiavi, F., Wood, B., Boyet, M., Halliday, A., 2020, Redox control on chromium isotope behaviour in silicate melts in contact with magnesiochromite, GCA, doi:10.1016/j.gca.2020.07.038
  6. Borisova, A., Zagrtdenov, N.,  Toplis, M., Guignard., J., 2020 New model of chromite and magnesiochromite solubility in silicate melts. 2020. ffhal-02996632f
  7. Boulanger, M., France, L., Deans, J., Ferrando, C., Lissenberg, C., von der Handt, A., 2020, Magma Reservoir Formation and Evolution at a Slow-Spreading Center (Atlantis Bank, Southwest Indian Ridge), Front. Earth Sci., doi: 10.3389/feart.2020.554598
  8. Brantley, S.  et al, 2020, A Vision for the Future Low-Temperature Geochemical Data-scape, Geochemical Data Workshop Paper, EarthArXiv.
  9. Brugman, K., 2020, Timescales and characteristics of magma generation in Earth and exoplanets, Arizona State University, ProQuest Dissertations Publishing, 2020. 27997686.
  10. Burton-Johnson, A., Macpherson, C., Millar, I., Whitehouse, M., Ottley, C., Nowell, G., 2020, A Triassic to Jurassic arc in north Borneo: Geochronology, geochemistry, and genesis of the Segama Valley Felsic Intrusions and the Sabah ophiolite, Gondwana Research, doi: 10.1016/
  11. Chen, S., Chen, B., 2020, Practices, Challenges and Prospects of Big Data
    Curation: A Case Study in Geoscience, International Journal of Data Curation, doi: 10.22181ijdc.v14i1.669
  12. Choi, H-O., Choi, S., Lee, Y., Ryu, J-S., Lee, D-C., Lee, S-G., Sohn, Y., Liu, J-Q., 2020, Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton, Gondwana Research, doi:10.1016/
  13. Durkefelden, A., Geldmacher, J. Hauff, F., Werner, R. (eds),2020, Origin and Geodynamic Evolution of King’s Trough: The Grand
    Canyon of the North Atlantic, METEOR-Berichte, Cruise No. M168 (GPF 20-3_080)
  14. Dyar, M., Helbert, J., Maturilli, A., Alemanno, G., Varatharajan, I., 2020, Predicting Iron Contents from Venus-Temperature Lab Emissivity Spectra: Insights into Igneous Rock Type, American Geophysical Union, Fall Meeting 2020, abstract #P022-04
  15. Ellam, R., 2020, Radiogenic Isotopes and Mantle Evolution, Reference Module in Earth Systems and Environmental Sciences, doi:10.1016/B978-0-12-409548-9.12533-3
  16. Ellam, R., 2020, Radiogenic Isotopes and Mantle Evolution, Encyclopedia of Pelogy, 2nd Ed, pp 330-344, doi: 10.1016/B978-0-12-409548-9.12533-3
  17. Farcy, N., Arevalo, R., McDonough, W., 2020, K/U of the MORB source and silicate Earth, JGR Solid Earth, doi:10.1029/2020JB020245
  18. Gargano, A., Sharp, Z., Shearer, C., Simon, J., Halliday, A., Buckley, W., 2020, The Cl isotope composition and halogen contents of Apollo-return samples, Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2014503117
  19. Guilbaud, M-N., Siebe, C., Rasoazanamparanay, C., Widom, E., Salinas, S., Govea, R., Petrographic, geochemical, and isotopic (Sr-Nd-Pb-Os) study of Plio-Quaternary volcanics and the Tertiary basement in the Jorullo-Tacámbaro area, Michoacán-Guanajuato Volcanic Field, Mexico, Journal of Petrology, doi:10.1093/petrology/egaa006
  20. Han, S., Li, M., Zhang, Q., & Song, L., 2020, An Automated Method to Generate and Evaluate Geochemical Tectonic Discrimination Diagrams Based on Topological Theory. Minerals, doi: 10.3390/min10010062
  21. Harpp, K., Weis, D., 2020, Insights Into the Origins and Compositions of Mantle Plumes: A Comparison of Galápagos and Hawai’I, G-Cubed, doi: 10.1029/2019GC008887
  22. Harrison, L., Weis, D., Garcia, M., 2020, The multiple depleted mantle components in the Hawaiian-Emperor chain, Chemical Geology, doi: 10.1016/j.chemgeo.2019.119324
  23. Hodel, F., Triantafyllou, A., Berger, J., Macouin, M., Baele, J-M., Mattielli, N., Monnier, C., Trinidade, R., Ducea, M., Chatir, A., Ennih, N., Langlade, J., Poujol, M., 2020, The Moroccan Anti-Atlas ophiolites: Timing and melting processes in an intra-oceanic arc-back-arc environment, Gondwana Research, doi:10.1016/
  24. Hoernle, K.,  Gill, J., Timm, C., Hauff, F.,  Werner, R., Garbe-Schönberg, D., Gutjahr, M., 2020,Hikurangi Plateau subduction a trigger for Vitiaz arc splitting and Havre Trough opening (southwestern Pacific). Geology doi: 10.1130/G48436.1
  25. Hole, M., Natland, J., 2020, Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics, Earth-Science Reviews, doi: 10.1016/j.earscirev.2019.02.011
  26. Homrighausen, S., Hoernle, K., Zhou, H., Geldmacher, J., Wartho, J-A., Hauff, F., Werner, R., Jung, S., Morgan, J., 2020, Paired EMI-HIMU hotspots in the South Atlantic—Starting plume heads trigger compositionally distinct secondary plumes?, Science Advances, doi: 10.1126/sciadv.aba0282
  27. Hong, L.,Zhang, L., Wang, Y, Ma, L., 2020, Recycled carbonate-induced oxidization of the convective mantle beneath Jiaodong, Eastern China, LIthos, doi:10.1016/j.lithos.2020.105544
  28. Hong, L.Yinhui, Z., Zhang, L., Xu, Y-G., Liu, Z., He, P.,  2020, Olivine chemistry of the Quaternary Datong basalts in the Trans-North China Orogen: Insights into mantle source lithology and redox–hydration state. Geological Society of London. Collection. doi:10.6084/m9.figshare.c.5227668.v1 
  29. Kakefuda, M., Tsujimori, T., Yamashita, K., Iizuka, Y., Flores, K., 2020, Revisiting Pb isotope signatures of Ni–Fe alloy hosted by antigorite serpentinite from the Josephine Ophiolite, USA, Journal of Mineralogical and Petrological Sciences, doi: 10.2465.jmps.190731a
  30. Lang Farmer, G., Fritz, D., Glazner, A., 2020, Identifying Metasomatized Continental Lithospheric Mantle Involvement in Cenozoic Magmatism From Ta/Th Values, Southwestern North America, G-Cubed, doi: 10.1029/2019GC008499
  31. Lara, M., Dasgupta, R., 2020, Partial melting of a depleted peridotite metasomatized by a MORB-derived hydrous silicate melt – Implications for subduction zone magmatism, GCA, doi: 10.1016/j.gca.2020.09.001
  32. Le Roex, A., Tinguely, C., Gregiore, M., 2020, Eclogite and garnet pyroxenite xenoliths from kimberlites emplaced along the southern margin of the Kaapvaal craton, southern Africa: mantle or lower crustal fragments?, J Petrology, doi:10.1093/petrology/egaa040
  33. Lewis, M., Asimow, P., Lund, D., McCart, S., 2020, Multiple Sills Tapped by a Series of Explosive Eruptions from the East Pacific Rise, American Geophysical Union, Fall Meeting 2020, abstract #V044-06
  34. Li, P., Xia, Q., Dallai, L., Bonatti, E., Brunelli, D., Cipriani, A., Ligi, M., 2020High H2O Content in Pyroxenes of Residual Mantle Peridotites at a Mid Atlantic Ridge Segment, Nature, doi:10.1038/s41598-019-57344-4
  35. Li, W., Tao, C., Liang, J., Liao, S., Yang, W., 2020, Heterogeneous mantle melting and magmatic processes at the East Pacific Rise (2.6–3.1°S): Evidence from mid-ocean ridge basalt geochemistry and Sr–Nd–Pb isotopes, International Geology Review, doi: 10.1080/00206814.2019.1647467
  36. Liu, B., Liang, Y., 2020, Importance of the size and distribution of chemical heterogeneities in the mantle source to the variations of isotope ratios and trace element abundances in mid-ocean ridge basalts, GCA, doi:10.1016/j.gca.2019.10.013
  37. Liu, B., Zhai, M., Peng, P., Guo, J., Liu, P., 2020, Prospects on Big Data-Driven Metamorphic Petrology, Acta Metallurgica Sinica, doi:10.16108/j.issn1006-7493.2020021
  38. Liu, H., Sun, W-D., Deng, J-H., 2020, Transition of subduction-related magmatism from slab melting to dehydration at 2.5 Ga, Precambrian Research, doi:10.1016/j.precamres.2019.105524
  39. Long, X., Geldmacher, J., Hoernle, K, Hauff, F., Wartho, J-A., Garbe-Schönberg, D., 2020, Origin of isolated seamounts in the Canary Basin (East Atlantic): The role of plume material in the origin of seamounts not associated with hotspot tracks, Terra Nova, doi:10.1111/ter.12468
  40. Lu, Z., Shi, Y., Hua, H., Tuo, S., Ye, X., Deng, Y., Fan, J., 2020, Current Data Administration and Sharing of International Scientific Ocean Drilling, Acta Metallurgica Sinica, doi:10.16108/j.issn1006-7493.2020025
  41. Ma, Q., Dick, H., Urann, B., Zhou, H., 2020, Silica-Rich Vein Formation in an Evolving Stress Field, Atlantis Bank Oceanic Core Complex, G-Cubed, doi: 10.1029/2019GC008795
  42. Mangler, M., Prytulak, J., Gisbert, G., Delgado-Granados, H., Petrone, C., 2020, Interplinian effusive activity at Popocatépetl volcano, Mexico: New insights into evolution and dynamics of the plumbing system, Volcanica, doi: 10.30909/vol.02.01.4572
  43. Matsuno, S., Uno, M., Okamoto, A., Tsuchiya, N., 2020, Compositional estimation of protolith and metamorphic mass transfer in metabasaltic rocks: A Machine-Learning-Based Approach,
    American Geophysical Union, Fall Meeting 2020, abstract #V041-11
  44. Maurizot, P., Collot, J., Cluzel, D., Patriat, M., 2020, The Loyalty Islands and Ridge, New Caledonia, Ch 6, Geological Society London, Memoris, doi:10.1144/M51-2017-24
  45. Merli, M., Bonadiman, C., Pavese, A., 2020, Aluminium distribution in an Earth’s non–primitive lower mantle, GCA, doi: 10.1016/j.gca.2020.02.023
  46. Miller, L., 2020, An X-Ray Absorption Spectroscopy Study of Redox Variable Elements in Silicate Melts, PhD Thesis, ANU Research School of Earth Sciences.
  47. Miyazaki, T., Gill, J., Hamelin, C., DeBari, S., Sato, T., Tamura, Y., KImura J., Vaglarov, B., Chang, Q., Senda, R., Haraguchi, S., 2020, The First 10 Million Years of Rear‐Arc Magmas Following Backarc Basin Formation Behind the Izu Arc, G-Cubed, doi:10.1029/2020GC009114
  48. Nakashole, A., le Roex, A., Reid, D., 2020, Geochemistry and petrogenesis of the Tsirub nephelinite intrusions, southern Namibia, J Afr Earth Sci, doi: 10.1016/j.jafrearsci.2019.103701
  49. Nielsen, R. Ustunisik, G., Lange, A., Tepley, F., Kent, A., Trace Element and Isotopic Characteristics of Plagioclase Megacrysts in MORB Plagioclases Ultraphyric Basalts (PUB), G-Cubed, doi:10.1029/2019GC008638
  50. Ning, W., Kusky, T., Wang, J., Wang, L., Deng, H., Polat, A., Huang, B., Peng, H., Feng, P., 2020, From subduction initiation to arc–polarity reversal: Life cycle of an Archean subduction zone from the Zunhua ophiolitic mélange, North China Craton, Precambrian Research, doi; 10.1016/j.precamres.2020.105868
  51. Ootes, L., Sandeman, H., Cousens, B., Luo, Y., Pearson, G., Jackson, V., 2020, Pyroxenitic magma conduits (ca. 1.86 Ga) in Wopmay orogen and slave craton: Petrogenetic constraints from whole rock and mineral chemistry, Lithos, doi: 10.1016/j.lithos.2019.105220
  52. Özturk, M., 2020, Assessment of discrimination of mafic rocks using trace element systematics with machine learning,PhD Thesis, The Graduate School of Natural and Applied Sceince of Middle East Technical University, 326 pp.
  53. Paquet, M., Hamelin, C., Moreira, M., Cannat, M., 2020, The isotopic (He, Ne, Sr, Nd, Hf, Pb) signature in the Indian Mantle over 8.8 Ma, Chemical Geology, doi:10.1016/j.chemgeo.2020.119741
  54. Pobric, V., Korolev, N. & Kopylova, M., 2020,  Eclogites of the North Atlantic Craton: insights from the Chidliak eclogite xenoliths (S. Baffin Island, Canada). Contrib Mineral Petrol, doi:
  55. Ptacek, M., Dauphas, N., Greber, N., 2020, Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions, EPSL, doi: 10.1016/j.epsl.2020.116090
  56. Qi, H., Zhao, J., 2020, Petrogenesis of the Neoproterozoic low-δ18O granitoids at the western margin of the Yangtze Block in South China, Precambrian Research, doi: 10.1016/j.precamres.2020.105953
  57. Rampone, E., Borghini, G., Basch, V., 2020, Melt migration and melt-rock reaction in the Alpine-Apennine peridotites: Insights on mantle dynamics in extending lithosphere, Geoscience Frontiers, doi:10.1016/j.gsf.2018.11.001
  58. Rebouillat, V., 2020, Entrepôts de données de recherche : mesurer l’impact de l’Open Science à l’aune de la consultation des jeux de données déposés. 7ème conférence Document numérique & Société- Humains et données : création, médiation, décision, narration, Sep 2020, Nancy, France. ffhal02928817f
  59. Sano, T., Hanyu, T., Tejada, M., Koppers, A., Shimizu, S., Miyazaki, T., Chang, Q., Senda, R., Vaglarov, B., Ueki, K., Toyama, C., Kimura, J-I., Nakanmishi, M., 2020, Two-stages of plume tail volcanism formed Ojin Rise Seamounts adjoining Shatsky Rise, Lithos, doi:10.1016/j.lithos.2020.105652
  60. Savage, B., 2020, Body wave speed structure of eastern North America, G-Cubed, doi:10.1029/2020GC009002
  61. Savelev, A., Malyshev, S., Savatenkov, M., Ignatov, D., Kuzkina, A., 2020, Meso-Neoproterozoic Mafic Sills along the South-Eastern Margin of the Siberian Craton, SE Yakutia: Petrogenesis, Tectonic and Geochemical Features, Minerals, doi:10.3390/min10090805
  62. Secchiari, A., Montanini, A., Bosch, D., Macera, P., Cluzel, D., 2020, Sr, Nd, Pb and trace element systematics of the New Caledonia harzburgites: Tracking source depletion and contamination processes in a SSZ setting, Geoscience Frontiers, doi:10.1016/j.gsf.2019.04.004
  63. Sighinolfi, G., Barbieru, M., Brunelli, D., Serra, R., 2020, Mineralogical and Chemical Investigations of the Amguid Crater (Algeria): Is there Evidence on an Impact Origin?, Geosciences, doi:10.3390/geosciences10030107
  64. Silantyev, S.A., Kostitsyn, Y.A., Shabykova, V.V. et al. Geodynamic Nature of Magmatic Sources in the Northwest Pacific: An Interpretation of Data on the Sr and Nd Isotope Composition of Rocks Dredged at the Stalemate Ridge, Ingenstrem Depression, and Shirshov Rise. Petrology, doi:10.1134/S0869591119060079
  65. Shim, S., Dolinschi, J., 2020, Exploring Earth and Planets with Large Databases, American Geophysical Union, Fall Meeting 2020, abstract #ED044-0002
  66. Søager,N., Holm, P., Massaferro, G.,Haller, M., Traun, M., 2020, The Patagonian intraplate basalts: A reflection of the South Atlantic convection cell, Gondwana Research, doi:10.1016/
  67. Song, X-Y., Wang, K-Y., Barnes, S., Yi, J-N., Chen, L-M., Shoneveld, L., 2020, Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China, american Mineralogist, doi: 10.2138/am-2020-7222
  68. Sun, G., Liu, S., Cawood, P., Tang, M., van Hunen, J., Gao, L., Hu, Y., Hu, F.,  2020. Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton, Nature Communications
  69. Sun, T., Li, C., Wang, D., Cheng, W., Ripley, E., 2020, Neoarchean arc basaltic magmatism and associated sulfide mineralization in the North China Craton: Evidence from the Taoke mafic-ultramafic complex in Shandong Province, Precambrian Research, doi:10.1016/j.precamres.2020.105594
  70. Sun, J., Rudnick, R., Kostrovitsky, S., Kalashinkova, T., Kitajima, K., Li, R., Shu, Q., 2020, The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberian craton, Contrib Min Pet, doi:10.1007/s00410-020-1655-6
  71. van Gerve, T., Neave, D., Almeev, R., Holtz, F.,Namur, O., 2020, Zoned crystal records of transcrustal magma transport, storage and differentiation: insights from the Shatsky Rise oceanic plateau, J Petrology, doi: 10.1093/petrology/egaa080
  72. Vandenberg, E., 2020, The E&L Magmatic Ni-Cu-(PGE) Deposit, Northwestern British Columbia: Preliminary Sulfide Petrology, Platinum-Group Element Mineralogy and Lead Isotope Systematics, Undergraduate Honors Thesis, University of British Columbia
  73. Venugopal, S., Moune, S., Williams-Jones, G., Druitt, T., Vigouroux, N., Wilson, A., Russell, J., 2020, Two distinct mantle sources beneath the Garibaldi Volcanic Belt: Insight from olivine-hosted melt inclusions, Chemical Geology, doi: 10.1016/j.chemgeo.2019.119346
  74. Wang, C., Hazen, R., Cheng, Q., Stephenson, M., Zhou, C., Fox, P,m Shen, S-Z., Oberhänsli, R., Hou, Z., Ma, X., Feng, Z., Fan, J., Ma, C., Hu, X., Lou, B., Wang, J., Schiffries, C., 2020, The Deep-Time Digital Earth program: data-driven discovery in geosciences, National Science Review, doi:10.1093/nsr/nwab027
  75. Wang, J.,  Zhou, H., Salters, V., Dick, H., Standish, J., Wang, C., 2020, Trace element and isotopic evidences for recycled lithosphere at basalts from 48°E to 53°E, Southwest Indian Ridge, Journal of Petrologydoi: 10.1093/petrology/egaa068
  76. Wang, J., Wu, C., Li, Z., Zhou,T., Zhou, Y., Feng, G., Jiao, Y., 2020, The Pennsylvanian Composite Volcanism in the Bogda Mountains, NW China: Evidence for Postcollisional Rift Basins, Lithosphere, doi: 10.2113/2020/8852440
  77. Wang, Y., Yu, Y., 2020, Partial melting of the lower oceanic crust: implications for tracing the slab component in the source of mid‐ocean ridge basalts, JGR Solid Earth, doi: 10.1029/2020JB020673
  78. Werner,R., Baranov, B., Hoernle, K., Hauff, F., Tararin, I., 2020, Discovery of Ancient Volcanoes in the Okhotsk Sea (Russia): New Constraints on the Opening History of the Kurile Back Arc Basin, Geosciences, doi:10.3390/geosciences10110442
  79. Wernette, B., 2020, From Layered Intrusions to Mid-Ocean Rides: The Petrography and Chemistry of Basaltic Magmas, PhD Thesis, Earth and Ocean Sciences in the Graduate School of Duke University, 224 pp.
  80. Whattam, S., Montes, C., Stern, R., 2020, Early central American forearc follows the subduction initiation rule, Gondwana Research, doi:10.1016/
  81. Whattam, S., Shervais, J., Reagan, M., Coulthard, D., Pearce, J., Jones, P., Seo, J., Putirka, K., Chapman, T., Heaton, D., Li, H., Nelson, W., Shimizu, K., Stern, R., 2020, Mineral compositions and thermobarometry of basalts and boninites recovered during IODP Expedition 352 to the Bonin forearc, American Mineralogist, doi: 10.2138/am-2020-6640
  82. Willig, M., Stracke, A., Beier, C., Samlters, V., 2020, Constraints on mantle evolution from Ce-Nd-Hf isotope systematics, GCA, doi: 10.1016/j.gca.2019.12.029
  83. Wu, Y., Guo, F., Wang, X-C., Zhnag, B., Zhang, X., Alemayehu, M., Wang, G., 2020, Generation of Late Cretaceous Ji’an basalts through asthenosphere-slab interaction in South China. GSA Bulletin, doi: 10.1130/B35196.1
  84. Wu, X., Tian ,L., Wang, X-C., Chu, F., Yan, Q., Sun, F., Li, X., Wang, W., Yu, L., Li, Z., Chen, L., 2020, Tracing mantle sources in the northern Lau back-arc basin by independent component analysis of basalt isotopic compositions, International Geology Review, , doi: 10.1080/00206814.2018.1561337
  85. Xiao, D., Zhao, X., Liao, Q’A., Zhao, H., Zeng, Z., 2020, Early Palaeozoic arc-related gabbro-diorite suite in East Junggar, southern Central Asian Orogenic Belt: petrogenesis and tectonic implications, International Geology Review, doi: 10.1080/00206814.2019.1641852
  86. Xing, C-M. Wang, C., 2020,Periodic mixing of magmas recorded by oscillatory zoning of the clinopyroxene macrocrysts from an ultrapotassic lamprophyre dyke, J Petrology, doi: 10.1093/petrology/egaa103
  87. Yu, X., Dick, H., 2020, Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge, EPSL, doi:10.1016/j.epsl.2019.116002
  88. Xu, Y., Liu, C-Z.,Lin, W, 2020, Melt extraction and reaction in the forearc mantle: Constraints from trace elements and isotope geochemistry of ultra-refractory peridotites of the New Caledonia Peridotite Nappe, Lithos,doi:10.1016/j.lithos.2020.105882
  89. Yierpan, A,Koenig, S., Labidi, J., Schoenberg, R.,  2020, Recycled selenium in hot spot–influenced lavas records ocean-atmosphere oxygenation, Science Advances
  90. Yu, Y., Huang, X-L., Sun, M., Yuan, C., 2020, Missing SrNd isotopic decoupling in subduction zone: Decoding the multi-stage dehydration and melting of subducted slab in the Chinese Altai, Lihtos, doi: 10.1016/j.lithos.2020.105465
  91. Yu, X., Liu, Z., 2020, Non-mantle-plume process caused the initial spreading of the South China Sea,Nature, doi: 10.1038/s41598-020-65174-y
  92. Zagrtdenov, N.R., Toplis, M., Borisova, A.Y., Guignard, J. ,2020, New model of chromite and magnesiochromite solubility in silicate melts. arXiv: Materials Science
  93. Zhang, G, Zhang, J., Wang, S., Zhao, J., 2020, Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chemical Geology, doi: 10.1016/j.chemgeo.2020.119566
  94. Zhang, J., Zhang, G., 2020, Geochemical and chronological evidence for collision of proto-Yap arc/Caroline plateau and rejuvenated plate subduction at Yap trench, Lithos, doi:10.1016/j.lithos.2020.105616
  95. Zhang, J., Chen, L., Cheng, Z., Tang, L., 2020, Geological characteristics of the Nankai Trough subduction zone and their tectonic significances, Acta Oceanol. Sin, doi:10.1007/s13131-020-1663-4
  96. Zhang, H., Shi, X., Li, C., Yan, Q., Yang, Y., Zhu, Z., Zhang, H., Wang, S., Guan, Y., Zhao, R., 2020, Petrology and geochemistry of South Mid-Atlantic Ridge (19°S) lava flows: implications for magmatic processes and possible plume-ridge interactions, Geoscience Frontiers, doi:10.1016/j.gsf.2020.06.007
  97. Zhang, M., Wang, C., Zhang, Q., Qin, Y., Shen, J., Hu, X., Zhou, G., Li, S., 2020, Temporal-Spatial Analysis of Alkaline Rocks Based on GEOROC, Applied Geochemistry, doi:10.1016/j.apgeochem.2020.104853
  98. Zhang, J-B., Liu, Y-S., Ducea, M., Xu, R., 2020, Archean, highly unradiogenic lead in shallow cratonic mantle, Geology, doi:10.1130/G47064.1
  99. Zhou, H., Hoernle, K., Geldmacher,J., Hauff, F., Homrighausen, S., Garbe-Scheoenberg, D., JUng, S., 2020, Geochemistry of Etendeka magmatism: Spatial heterogeneity in the Tristan-Gough plume head, EPSL, doi:10.1016/j.epsl.2020.116123
  100. Zhu, L., Zhang, G., Liu, Y., Lin, J., Tong, X., Jiang, S.,2020, Improved in-situ Determination of Sr Isotope Ratio in Silicate Samples Using LA-MC-ICP-MS and Its Wider Application for Fused Rock Powder Journal of Earth Science, doi:10.1007/s12583-019-1214-0

PetDB: 2019

  1. Angel, D., Albert, H., Tuan, L., Phi, N., Utami, S., Khanh, P., Widiwijayanto, C., Costa, F., 2019, PWD: A Petrological Workspace & Database tool, G-Cubed, doi: 10.1029/2019GC008710
  2. Barbero, E., Festa, A., Saccani, E., Catanzariti, R., D’Onofrio, R., 2019, Redefinition of the Ligurian Units at the Alps–Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from mélanges and broken formations, Journal of the Geological Society, doi:10.1144/jgs2019-022
  3. Belay, I., Tanaka, R., Kitagawa, H., Kobayashi, K., Nakamura, E., 2019, Origin of ocean island basalts in the West African passive margin without mantle plume involvement, Nature Communications, doi: 10.1038/s41467-019-10832-7
  4. Benjamin, W., O’Neil, J., Rizo, H., 2019, Geochemistry and petrogenesis of the early Archean mafic crust from the Saglek-Hebron Complex (Northern Labrador), Precambrian Research, doi:10.1016/j.precamres.2019.04.001
  5. Bennett, E., Jenner, F., Millet, M-A., Cashman, V., Lissenberg, C., 2019, Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions, Nature, doi: 10.1038/s41586-019-1448-0
  6. Bosworth, W., Khalil, S., Ligi, M., Stockli, D., McClay, K., 2019, Geology of Egypt: The Northern Red Sea, In: Hamimi Z., El-Barkooky A., Martínez Frías J., Fritz H., Abd El-Rahman Y. (eds) The Geology of Egypt. Regional Geology Reviews. Springer, Cham, doi:10.1007/978-3-030-15265-9_9
  7. Burton-Johnson, A., Macpherson, C., Ottley, C., Nowell, G., Boyce, A., 2019, Generation of the Mt Kinabalu granite by crustal contamination of intraplate magma modelled by Equilibrated Major Element Assimilation with Fractional Crystallisation (EME-AFC), Journal of Petrology, doi:10.1093/petrology/egz036
  8. Chen, S., Hin, R., John, T., Brooker, R., Bryan, B., Niu, Y., Elliott, T., 2019, Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration, Nature Communications, doi: 10.1038/s41467-019-12696-3
  9. Chen, Y., Niu, Y., Wang, X., Gong, H., Guo, P., Gao, Y., Shen, F., 2019, Petrogenesis of ODP Hole 735B (Leg 176) Oceanic Plagiogranite: Partial Melting of Gabbros or Advanced Extent of Fractional Crystallization? G-Cubed, doi:10.1029/2019GC008320
  10. Choi, H-O., Choi, S-I., Lee, Y-S., Ryu, J-S., Lee, D-C., Lee, S-G., Sohn, Y-K., Liu, J-Q., 2019, Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, doi:10.1016/
  11. Crow, M., Van Waveren, I., Hasibuan, F., 2019, The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an early Permian volcanic-plutonic centre in Sumatra, Indonesia,J Asian Earth Sci, doi: 10.1016/j.jseaes.2018.08.003
  12. Davydova, M.Y., Martynov, Y.A., Perepelov, A.B., 2019, Evolution of the Isotopic-Geochemical Composition of Rocks of Uksichan Volcano, Sredinnyi Range, Kamchatka, and Its Relations to the Tectonic Restyling of Kamchatka in the Neogene, Petrology, doi:10.1134/S0869591119030020
  13. de Graaff, S., Goodenough, K., Klaver, M., Lissenberg, C., Jansen, M., Millar, I., Davies, G., 2019, Evidence for a moist to wet source transition throughout the Oman‐UAE Ophiolite, and implications for the geodynamic history, G-Cubed, doi: 10.1029/2018GC007923
  14. Dolinschi, J., Shim., S., 2019, Teaching Resource in Jupyter Notebooks for Accessing and Analyzing Large Research Databases in Earth and Planetary Science, American Geophysical Union, Fall Meeting 2019, abstract #ED53F-0904, Bibcode: 2019AGUFMED53F0904D
  15. Dürkefälden, A., Hoernle, K., Hauff, F., Wartho, J-A., van den Bogaard, P., Werner, R., 2019, Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean large Igneous Province, Lithos, doi: 10.1016/j.lithos.2018.12.021
  16. Fang, X., Zeng , Z., Hu, S., Li, X., Chen, Z., Chen, S., Zhu, B., 2019, Origin of Pumice in Sediments from the Middle Okinawa Trough: Constraints from Whole-Rock Geochemical Compositions and Sr-Nd-Pb Isotopes, Journal of Marine Science and Engineering, doi: 10.3390/jmse7120462
  17. Freymuth, H., Andersen, M., Elliott, T., 2019, Uranium isotope fractionation during slab dehydration beneath the Izu arc, EPSL, doi: 10.1016/j.epsl.2019.07.006
  18. Gard, M., Hasterok, D., Halpin, J., 2019, Global whole-rock geochemical database compilation, Earh System Science Data, doi: 10.5194/essd-11-1553-2019
  19. Gard, M., Hasterok, D., Hand, M., Cox, G., 2019, Variations in continental heat production from 4 Ga to the present: Evidence from geochemical data, Lithos, doi:10.1016/j.lithos.2019.05.034
  20. Gianola, et al., 2019, The crust-mantle transition of the Khantaishir arc ophiolite (western Mongolia), Journal of Petrology, doi:10.1093/petrology/egz009
  21. Gisbert Pinto, G., Mangler, M., Prytulak, J., Degado-Granados, H., Petrone, C., 2019, Interplinian effusive activity at Popocatépetl volcano, Mexico: New insights into evolution and dynamics of the plumbing system, Volcanica, doi: 10.30909/vol.02.01.4572
  22. Greber, N., Dauphas, N., 2019, The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust, Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2019.04.012
  23. Han, S., Li, M-C., Zhang, Q., Li, H., 2019, A Mathematical Model Based on Bayesian Theory and Gaussian Copula for the Discrimination of Gabbroic Rocks from Three Tectonic Settings, Journal of Geology, doi:10.1086/705413
  24. Han, S., Li, M., Ren, Q., 2019, Discriminating among tectonic settings of spinel based on multiple machine learning algorithms, Big Earth Data, doi: 10.1080/20964471.2019.1586074
  25. Hannington, M., Kopp, H., Schnabel, M., Devey, C., Petersen, S. 2019, RV SONNE Fahrtbericht/Cruise Report SO267,Berichte aus dem GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, doi: 10.3289/GEOMAR_REP_NS_49_2019
  26. Haraguchi, S, Ueki, K., Yoshida, K., Kuwatani, T., Mohamed, M., Iwamori, H., 2019, Geochemical database of Japanese islands based on published domestic data: standardization of data and high-precision location coordinates, AGU Fall meeting Abstracts,
  27. Haraguchi, S., Ueki, K., Yoshida, K., Kuwatani, T., Mohamed, M., Iwamori, H., 2019, The geochemical database “DODAI” with high-precision location
    coordinates, Japan Geoscience Meeting 2019, MGI33-P01
  28. Harrison, L., Weiss, D. Garcia, M., 2019, The Multiple Depleted Mantle Components in the Hawaiian-Emperor Chain: A Review, Chemical Geology, doi: 10.1016/j.chemgeo.2019.119324
  29. He, Y., Bai, Y., Tian, D., Yao, L., Fan, R., Chen, P.2019, A review of geoanalytical databases, Acta Geochimica, doi:10.1007/s11631-019-00323-3
  30. He, Y., Tian, Wang, H., Yao, L., Yu, M., Chen, P., .2019, A universal and multi-dimensional model for analytical data on geological samples, Geosci. Instrum. Method. Data Syst, doi:10.5194/gi-8-277-2019
  31. Hernandez-Uribe, D., Palin, R., 2019, Petrological model for subducted oceanic crust, J Metamorphic Geology, doi: 10.1111/jmg.12483
  32. Herzberg, et al., 2019, Origin of high-Mg bimineralic eclogite xenoliths in kimberlite: A comment on a papers by Aulbach and Arndt (2019), EPSL, doi: 10.1016/j.epsl.2019.01.014
  33. Hole, et al., 2019, Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics, Earth Science Reviews, doi:10.1016/j.earscirev.2019.02.011
  34. Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J.-A., van den Bogaard, P., Garbe-Schönberg, D., 2019, New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin, GCA, doi: 10.1016/j.gca.2018.09.002
  35. Iwamori, H., Nakamura, H., Yoshida, M., Nakagawa, T., Ueki, K., Nakao, A., Nishizawa, T., Haraguchi,S., 2019, Trace-element characteristics of east–west mantle geochemical hemispheres,Comptes Rendus Geoscience,doi:10.1016/j.crte.2018.09.007
  36. Jaques, G., Hauff, F., Joernle, K., Werner, R., Uenzelmann-Neben, G., Garbe-Schoenberg, D., Fischer, M., 2019, Nature and origin of the Mozambique Ridge, SW Indian Ocean, Chemical Geology, doi: 10.1016/j.chemgeo.2018.12.027
  37. Jones, R., van Keken, P., Hauri, E., Tucker, J., Vervoort, J., Ballentine, C., 2019, Origins of the terrestrial Hf-Nd mantle array: Evidence from a combined geodynamical-geochemical approach, EPSL, doi:10.1016/j.epsl.2019.04.015
  38. Jones, M., 2019, Geophysical and Geochemical Constraints on Submarine Volcanic Processes, Doctoral Thesis MIT-WHOI
  39. Jones, M., Wanless, V., Soule, S., Kurz, M., Mittelstaedt, E., Fornari, D. J.Curtice, J., Klein, F., Le Roux, V., Brodsky, H., Péron, S., Schwartz, D., 2019, New constraints on mantle carbon from Mid-Atlantic Ridge popping rocks, EPSL, doi: 10.1016/j.epsl.2019.01.019
  40. Kokhan, A., Dubinin, E., Sushchevskaya, N., 2019, Structure and Evolution of the Eastern Part of the Southwest Indian Ridge, Geotectonics, doi: 10.1134/S0016852119040034
  41. Lambart, S., Koorneef, J., Millet, M-A., Davies, G., Cook, M., Lissenberg, C., 2019, Highly heterogeneous depleted mantle recorded in the lower oceanic crust, Nature Geoscience, doi:10.1038/s41561-019-0368-9
  42. Lao, J., 2019, Visualization analysis, how can we read data visualizations? Carnegie Mellon University, Department of Statistics and Data Science,
  43. Larrea, P., Widom, E., Siebe, C., Salinas, S., Kuentz, D, 2019, A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity, Chemical Geology, doi: 10.1016/j.chemgeo.2018.10.026
  44. Le Voyer, M., Hauri, E. H., Cottrell, E., Kelley, K. A., Salters, V. J. M., Langmuir, C. H., et al. ,2019, Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochemistry, Geophysics, Geosystems, doi:10.1029/2018GC007630
  45. Leath, J., 2019, Metals in subduction related magmatism: Insights from melt inclusions and associated glassy groundmass from the Southern Kermadec Arc, New Zealand, Thesis, Victoria University of Wellington.
  46. Li, W., Tao, C., Zhang, W., Liu, J., LIang, J., Liao, S., Yang, W., 2019, Melt Inclusions in Plagioclase Macrocrysts at Mount Jourdanne, Southwest Indian Ridge (~64◦ E): Implications for an Enriched Mantle Source and Shallow Magmatic Processes, Minerals, doi:10.3390/min9080493
  47. Lieu, W., 2019, Statistical Treatment and Modeling of Geochemical Data of Volcanic Arcs, PhD Thesis, University of Texas, Dallas, 159 pp.
  48. Lieu, W., and Stern, R., 2019, The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs, Geosphere, doi: 10.1130/GES01667.1
  49. Lin, C., Harris, R., Sun W., Zhang, G., 2019, Geochemical and Geochronological Constraints on the Origin and Emplacement of the East Taiwan Ophiolite, G-Cubed, doi: 10.1029/2018GC007902
  50. Lissenberg, J., MacLeod, C., Bennett, E., 2019, Consequences of crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, doi:10.1098/rsta.2018.0014
  51. Liu, B., Liang, Y., 2019, Importance of the size and distribution of chemical heterogeneities in the mantle source to the variations of isotope ratios and trace element abundances in mid-ocean ridge basalts, GCA, doi: 10.1016/j.gca.2019.10.013
  52. Liu, C., Runyon, S., Knoll, A., Hazen R., 2019, The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents, Earth-Sconce Reviews, doi:10.1016/j.earscirev.2019.05.004
  53. Liu, H., Sun W-D., Deng, J., 2019, Statistical analysis on secular records of igneous geochemistry: Implication for the early Archean plate tectonics, Geological Journal, doi: 10.1002/gj.3484
  54. Liu, H., Sun, W-D., Deng, J-H., 2019, Transition of subduction-related magmatism from slab melting to dehydration at 2.5 Ga, Precambrian Research, doi: 10.1016/j.precamres.2019.105524
  55. Liu, H., Sun, W., Zartman, R., Tang, M., 2019, Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago, Nature Communications, doi:10.1038/s41467-019-11329-z
  56. Long, X., Geldmacher, J., Hoernle, K., Hauff, F., Wartho, A., Garbe-Schoenberg, D., Grevemeyer, I., 2019, Age and origin of Researcher Ridge and an explanation for the 14 N anomaly on the Mid-Atlantic Ridge by plume-ridge interaction, Lithos, doi: 10.1016/j.lithos.2019.01.005
  57. Lustrino, M., Luciani, N., Stagno, V., 2019, Fuzzy petrology in the origin of carbonatitic/pseudocarbonatitic Ca-rich ultrabasic magma at Polino (central Italy), Nature, doi:10.1038/s41598-019-45471-x
  58. Mallick, S., Salters, V., Langmuir, C., 2019, Geochemical Variability Along The Northern East Pacific Rise: Coincident Source Composition and Ridge Segmentation,G-Cubed, doi: 10.1029/2019GC008287
  59. Mana, S., Fontijn, K., DiMaggio, E., 2019,Compiling geochemistry, geochronology and physical information of EAR explosive events to constrain the spatial and temporal evolution of the rift,
    American Geophysical Union, Fall Meeting 2019, abstract #V11C-04, BibCode: 2019AGUFM.V11C..04M
  60. Mangler, M., Prytulak, J., Gisbert, G., Delgado-Granados, H., Petrone, C.,2019, Interplinian effusive activity at Popocatepetl volcano, Mexico : new insights into evolution and dynamics of the plumbing system, Volcanica, doi: 10.30909/vol.02.01.4572
  61. McNamara, A., 2019, A review of large low shear velocity provinces and ultra low velocity zones, Tectonophysics, doi:10.1016/j.tecto.2018.04.015
  62. Nakashole, A., le Roex, A., Reid, D., 2019, Geochemistry and petrogenesis of the Tsirub nephelinite intrusions, southern Namibia, J Afr Earth Svi, doi:10.1016/j.jafrearsci.2019.103701
  63. Naumova, V., Eremenko, V., Platonov, K., Dyakov, S.,Eremenko, A., 2019, Development of geographically distributed information-analytical geological environment, Russian Journal of Earth Sciences, doi: 10.2205/2019ES000696
  64. Naumova, V., Platonov, K., Eremenko, V., Patuk, M., Dyakov, S., 2019, Information and analytical environment to support scientific research in geology: current status and prospects for development,XVII INTERNATIONAL CONFERENCE OF DISTRIBUTED INFORMATION-COMPUTATIONAL RESOURCES (DICR-2019), Russia, Novosibirsk, 2019, doi: 10.25743/ICT.2019.70.61.021
  65. Nauret, F., Famin, V., Vlastelic, I., Gannoun, A., 2019, A trace of recycled continental crust in the Réunion hotspot, Chemical Geology, doi:10.1016/j.chemgeo.2019.06.009
  66. Nebel, O., Sossi, P., Benard, A., Arculus, R., Yaxley, M., Davies, D., Ruttor, S., 2019, Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes, EPSL, doi:10.1016/j.epsl.2019.05.037
  67. Ni, P., Zhang, Y., Chen, S., Gagnon, J., 2019, A melt inclusion study on volatile abundances in the lunar mantle, GCA, doi:10.1016/j.gca.2018.12.034
  68. Ootes, L., Sandeman, H., Cousens, B., Luo, Y., Pearson, G., Jackson, V., 2019, Pyroxenitic magma conduits (ca. 1.86 Ga) in Wopmay orogen and Slave craton: Petrogenetic constraints from whole rock and mineral chemistry, Lithos, doi: 10.1016/j.lithos.2019.105220
  69. Ou, Q., Wang, Q., Wyman, D., Zhang, C., Hao, L-L., Dan, W., Jiang, Z-Q., Wu, F-Y., Yang,J-H., Zhang, H-X., Xia,X-P., Ma,L., Long,X-P., Li, J., 2019, Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. GSA Bulletin, doi: 10.1130/B31911.1
  70. Ozturk, M., 2019, Assessment of discrimination of mafic rocks using trace element systematics with machine learning, PhD Thesis, Middle East Tehcnical University, 326 p.
  71. Pantazidis, A., Baziotis, I., Solomonidou, A., Manoutsoglou, E., Palles, D., Kamitsos, E., Karageorgis, A., Profitiliotis, G., Kondoyanni, M., Klemme, S., Berndt, J., Ming, D., Asimow, P., 2019, Santorini volcano as a potential Martian analogue: The Balos Cove Basalts, doi:10.1016/j.icarus.2019.02.026
  72. Park, S-H., Langmuir, C., Sims, K., Blichert-Toft, J., Kim, S-S., Scott, S., Lin, J., Choi, H., Yang, Y-S., Michael, P., 2019, An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean, Nature Geoscience, doi:10.1038/s41561-018-0292-4
  73. Parr, C., Gries, C., O’Brien, M., Downs, R., Duerr, R., Koskela, R., Tarrant, P., Maull, K., Hoelbelheinrich, N., Stall, S., 2019, A Discussion of Value Metrics for Data Repositories in Earth and Environmental Sciences, Data Science Journal, doi: 10.5334/dsj-2019-058
  74. Platonov, K., Naumova, V., Eremenko, V., Dyakov, S, 2019,Information and Analytical Environment to Support Scientific Research in Geology: Current Status and Development Perspectives, CEUR Workshop
  75. Rampone, E. Borghini, G., Bashc, V., 2019, Melt migration and melt-rock reaction in the Alpine-Apennine peridotites: Insights on mantle dynamics in extending lithosphere.Geoscience Frontiers, doi: 10.1016/j.gsf.2018.11.001
  76. Ren, Q., Li, M., Han, S., Zhang, Y., Zhang, Q., Shi, J., 2019, Basalt Tectonic Discrimination Using Combined Machine Learning Approach, Minerals, doi:10.3390/min9060376
  77. Rumbolo, T., 2019, Sr-Nd-Pb-Hf- isotopic study of mantle rocks in the ophiolitic sequences of the Alpine-Apennine orogenic belt: Implications for heterogeneity in the MORB sources, Plinius, doi:10.19276/plinius.2019.01011
  78. Sano, T., Yamashita, S., 2019, Evolution, hydrothermal assimilation, and ascent of magma inferred from volatile contents in MORB glasses: An example from thick lava pile at IODP Site 1256, Lithos, doi: 10.1016/j.lithos.2019.07.010
  79. Shervais, J. W., Reagan, M., Haugen, E., Almeev, R. R., Pearce, J. A., Prytulak, J., et al. (2019). Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20, 314– 338. doi:10.1029/2018GC007731
  80. Shimizu, K., Ito, M., Chang, Q., Miyazaki, T., Ueki, K., Toyama, C., Sends, R., Vaglarov, B., Ishikawa, T., Kimura, J-I., 2019, Identifying volatile mantle trend with the water–fluorine–cerium systematics of basaltic glass, Chemical Geology, doi:10.1016/j.chemgeo.2019.06.014
  81. Shimizu, K., Saal, A., Hauri, E., Perfit, M., Hekinian, R., 2019,Evaluating the roles of melt-rock interaction and partial degassing on the CO2/Ba ratios of MORB: implications for the CO2 budget in the Earth’s depleted upper mantle, GCA, doi:10.1016/j.gca.2019.06.013
  82. Smith, D., Schouten., H., Klein, E., Wernette, B., Parnell-Turner, R., Cann, J., Zheng, T., 2019,Formation of the Galapagos Microplate and its Effect on Rifting at the Galapagos Triple Junction, AGU Fall Meeting Absgtract, doi: 10.1002/essoar.10501854.1
  83. Tang, Y-W., Chen, L., Zhao, Z-F., Zheng, Y-F., 2019, Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet, Geology, doi: 10.1130/B35304.1
  84. Tuller-Ross, B., Marty, B., Chen, H., Kelley, K., Lee, H., Wang, K., 2019, Potassium isotope systematics of oceanic basalts, GCA, doi:,10.1016/j.gca.2019.06.001
  85. Venugupal, S., Moune, S., Williams-Jones, G., Druitt, T., Vigouroux, N., Wilson, A., Russell, J., 2019, Two distinct mantle sources beneath the Garibaldi Volcanic Belt: Insight from olivine-hosted melt inclusions, Chemical Geology, doi:10.1016/j.chemgeo.2019.119346
  86. Wang, W., Chu, F., Wu, X., Li, Z., Chen, L., Li, X., Yan, Y., Zhang, J., 2019, Constraining Mantle Heterogeneity beneath the South China Sea: A New Perspective on Magma Water Content, Minerals, doi: 10.3390/min9070410
  87. Wang, J., Xiong, X., Takahashi, E., Zhang, L., Liu, X., 2019, Oxidation state of arc mantle revealed by partitioning of V, Sc and Tibetween mantle minerals and basaltic melts, JGR, doi:10.1029/2018JB016731
  88. Wanke, M., Clynne, M., von Quadt, A., Venneman, T., Bachmann, O., 2019, Geochemical and petrological diversity of mafic magmas from Mount St. Helens, Contrib Min Pet, doi:10.1007/s00410-018-1544-4
  89. Wasilewski, B., O’Neil, J., Rizo, H., 2019, Geochemistry and petrogenesis of the early Archean mafic crust from the Saglek-Hebron Complex (Northern Labrador), Precambrian Research, doi: 10.1016/j.precamres.2019.04.001
  90. Whattam, S., Montes, C., Stern, R., 2019, Early Central American forearc follows the subduction initiation rule, Gondwana Resarch, doi:10.1016/
  91. Willig, M., Stracke, A., Beier, C., Salters, V., 2019, Constraints on mantle evolution from Ce-Nd-Hf isotope systematics, GCA, doi:10.1016/j.gca.2019.12.029
  92. Wu, X., Tian, L., Wang, X-C, Chu, F., Yan, Q., Sun, F., Li, X., Wang, W., Yu, L., Li, Z., Chen, L., 2019, Tracing mantle sources in the northern Lau backarc basin by independent component analysis of basalt isotopic compositions, International Geology Review, doi: 10.1080/00206814.2018.1561337
  93. Wu, Y., 2019, Investigating the Applications of Neodymium Isotopic Compositions and Rare Earth Elements as Water Mass Tracers in the South Atlantic and North Pacific, PhD Thesis, Columbia University, 435 p.
  94. Wu, Y., Guo, F., Wang, X-C., Zhang, B., Zhang, X., Alemayehu, M., Wang. G., 2019, Generation of Late Cretaceous Ji’an basalts through asthenosphere-slab interaction in South China, Geol Soc America Bull., doi:10.1130/B35196.1
  95. Xu, C., Inoue, T., 2019, Melting of Al-richphase D up to the uppermost lower mantle and transportation of H2O to the deep Earth, G-Cubed, doi:10.1029/2019GC008476
  96. Yang, A., Wang, C., Liang, Y., Lissenberg, C., 2019, Reaction between mid-ocean ridge basalt and lower oceanic crust: An experimental study, G-Cubed, doi:10.1029/2019GC008368
  97. Yao, J-H., Zhu, W-G., Li, C., Zhong, H., Yu, S., Ripley, E., Bai, Z-J., 2019, Olivine O isotope and trace element constraints on source variation of picrites in the Emeishan flood basalt province, SW China, Lithos, doi: 10.1016/j.lithos.2019.04.019
  98. Yierpan, A., Konig, S., Labidi, J., Schoenberg, R., 2019, Selenium isotope and S-Se-Te elemental systematics along the Pacific-Antarctic ridge: Role of mantle processes,GCA, doi:10.1016/j.gca.2019.01.028
  99. Yoder, M., 2019, Evaluating the Iron Geochemistry of Terrestrial Aerosol Sources to the Subarctic Pacific Ocean,Honors Theses. Paper 919.
  100. Xia, L., Li, X., 2019, Basalt geochemistry as a diagnostic indicator of tectonic setting, Gondwana Research, doi:10.1016/
  101. Yu, X., Dick, H., 2019, Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge, EPSL, doi:10.1016/j.epsl.2019.116002
  102. Yu, X., Han, X., Tang, L., Liu, J., Zhang, P., 2019, The geotectonic features of the Southeast Indian Ridge and its current research progress, Chinese Science Bulletin, doi: 10.1360/N972018-01136
  103. Yu, Y., Sun. M., Yuan, C., Zhao, G., Huang, X-L., Rojas-Agramonte, Y, Chem, Q., 2019, Evolution of the middle Paleozoic magmatism in the Chinese Altai: Constraints on the crustal differentiation at shallow depth in the accretionary orogen, J East Asian Earth Sci, doi:10.1016/j.jseaes.2018.07.026
  104. Zhang, L., Sun, W,m Zhang, Z., An, Y., Liu, F., 2019, Iron isotope behavior during melt‐peridotite interaction in supra‐subduction zone ophiolite from Northern Tibet, JGR Solid Earth, doi:10.1029/2019JB018823
  105. Zhang, L., Sun, W., Chen. R-X., 2019, Evolution of serpentinite from seafloor hydration to subduction zone metamorphism: petrology and geochemistry of serpentinite from the ultrahigh pressure North Qaidam orogen in northern Tibet, Lithos, doi:10.1016/j.lithos.2019.105158′
  106. Zhang, Q., Sun, W., Zhao, Y., Yuan, F., Jiao, S., Chen, W., 2019, New discrimination diagrams for basalts based on big data research, Big Earth Data, doi: 10.1080/20964471.2019.1576262
  107. Zheng, H., Zhong, L., Wang, R., Yang, L., Kapsiotis, A., Xiao, Y., Wan, Z, 2019, Geochemistry and geochronology of mafic rocks from the Jinghe ophiolitic mélange, northwest China: implications for plume-related magmatism and accretionary processes within the North Tianshan Ocean, Lithos, doi:10.1016/j.lithos.2019.105246
  108. Zhou, G., Wang, Y., Shi, Y., , Xie, H., Li, D, Guo, B., 2019, Geochronology and geochemistry of mafic intrusions in the Kalatag area, eastern Tianshan. Acta Petrologica Sinica, doi:10.18654/1000-0569/2019.10.14
  109. Zhou, X., 2019, Analytical development for precise and accurate determination of highly siderophile elements in geological samples and its application to the study of Horoman peridotite massif, Japan, PhD Thesis, Okayama University, 137 p.,
  110. Zhu, L., Zhang, G., Liu,Y., Lin, J., Tong, X., Jiang, S., J., 2019, Improved in-situ Determination of Sr Isotope Ratio in Silicate Samples Using LA-MC-ICP-MS and Its Wider Application for Fused Rock Powder, Earth Sci., doi: 10.1007/s12583-019-1214-0

PetDB: 2018

  1. Barnes, S., and Arndt, N., 2018 Chapter 6 - Distribution and Geochemistry of Komatiites and Basalts Through the Archean, Earth's Oldest Rocks, pp. 103-132, doi:10.1016/B978-0-444-63901-1.00006-X
  2. Borghini, G., Francomme, J., Fumagalli, P., 2018, Melt-dunite interactions at 0.5 and 0.7 GPa: experimental constraints on the origin of olivine-rich troctolites, Lithos, doi:10.1016/j.lithos.2018.09.022
  3. Brunelli, D., Cipriani, A., Bonatti, E., 2018,Thermal effects of pyroxenites on mantle melting below mid-ocean ridges, Nature Geoscience, doi:10.1038/s41561-018-0139-z
  4. Chen, B., Yu, J-J., Liu, S-J, 2018, Source characteristics and tectonic setting of mafic–ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic–ultramafic intrusion, Lithos, doi:10.1016/j.lithos.2018.03.016
  5. Cheng. T., Nebl, O., Sossi, P., Wu, J., Siebel, W., Chen, F., Nebel-Jacobsen, Y., 2018, On the Sr-Nd-Pb-Hf isotope code of enriched, Dupal-type sub-continental lithospheric mantle underneath south-western China, Chemical Geology, doi:10.1016/j.chemgeo.2018.05.018
  6. Coogan, L., and Gillis, K., 2018 Temperature dependence of chemical exchange during seafloor weathering: Insights from the Troodos ophiolite, GCA, doi:10.1016/j.gca.2018.09.025
  7. Crow, M., Van Waveren, I., Hasibuan, F., 2018, The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an Early Permian volcanic - plutonic centre in Sumatra, Indonesia, J Asian Earth Sci, doi:10.1016/j.jseaes.2018.08.003
  8. Deng, Z., Moynier, F., Sossi, P., Chaussidon, M., 2018, Bridging the depleted MORB mantle and the continental crust using titanium isotopes, Geochemical Perspectives Letters, doi:10.7185/geochemlet.1831
  9. Deschamps, F.,  Duchêne, S., de Sigoyer, J.,  Bosse, V.,  Benoit, Vanderhaeghe, M., 2018, Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China), Journal of Petrology, doi:10.1093/petrology/egy007
  10. Ferriss, E., Plank, T., Newcomb, M., Walker, D., Hauri, E., 2018, Rates of dehydration of olivines from San Carlos and Kilauea Iki, GCA, doi:10.1016/j.gca.2018.08.050
  11. Finlayson V., Konter, J., Konrad, A., Koppers, A., Jackson, M., Rooney, T., 2018, Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot, EPSL, doi:10.1016/j.epsl.2018.08.020
  12. Frueh-Green, G., Orcutt, B., Roumejon, S., Lilley, M., Morono, Y., Cotterill, C., Green, S., Escartin, J., John, B., McCaig, A., Cannat, M., Menez, B., Schwarzenbach, E., Williams, M., Lang, S., Schrenk, M., Brazelton W., Bilenker, L., 2018, Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357), Lithos, doi: 10.1016/j.lithos.2018.09.012
  13. Garber, J., Maurya, S., Hernandez, J-A., Duncan, M., Zeng, L., Zhang, H., Faul, U., McCammon, C., Montagner, J-P., Moresi, L., Romanowicz, B., Rudnick, R., Stixrude, L., 2018, Multidisciplinary constraints on the abundance of diamond and eclogite in the cratonic lithosphere, G-Cubed, doi:10.1029/2018GC007534
  14. Gomez-Tuena, A.,Cavazos-Tovar, J., Parolari, M., Straub, S., Espinasa-Perena, R.,2018, Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas, Lithos, doi: 10.1016/j.lithos.2018.10.005
  15. Green, 2018, Constraining Magma Evolution mechanisms along the Galapagos Spreading Center between 102 W and 82 W through trace element Geochemistry, BS Thesis, The Ohio State University,
  16. Grove, M., Brown, S., 2018, Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited, AJS, doi:10.2475/01.2018.02
  17. Hanley J., Koga K., 2018,  Halogens in Terrestrial and Cosmic Geochemical Systems: Abundances, Geochemical Behaviors, and Analytical Methods. In: Harlov D., Aranovich L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham, doi:10.1007/978-3-319-61667-4_2.
  18. Hara, T., et al., 2018, In-situ Sr-Pb isotope geochemistry of lawsonite: A new method to investigate slab-fluids, Lithos, doi:10.1016/j.lithos.2018.09.001
  19. Haraguchi, S., Ueki, K, Yoshida, K., Kuwatani, T., Mohaned, M., Horiuchi, S., Iwamori, H., 2018, Geochemical database of Japanese islands for basement rocks, Geological Magazine, doi:10.5575/geosoc.2018.0027
  20. Homrighausen, S., Hoernle, K., Geldmacher, J., Wartho, J-A., Portnyagin, M., Werner, R., can den Bogaards, P., Garbe-Schoenberg,D., 2018, Unexpected HIMU-type late-stage volcanism on the Walvis Ridge, EPSL, doi: 10.1016/j.epsl.2018.03.049
  21. Homrighausen, S., Hoernle, K., Hauff, F., Gedlnacher, J., Wartho, J-A., van den Bogaard, P.,Garbe-Schoendberg, D., 2018, Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics, Earth Science Reviews, vol 182, doi:10.1016/j.earscirev.2018.04.009
  22. Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J-A., van den Bogaard, P., Garbe-Scheonberg, D., 2018, New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin, GCA, doi: 10.1016/j.gca.2018.09.002
  23. Iwamori, H., Nakamura, H., Yoshida, M., Nakagawa, T., Ueki, K., Nakao, A., Nishizawa, T., Haraguchi, S., 2018, Trace-element characteristics of east–west mantle geochemical hemispheres, Comptes Rendus Geoscience, doi:10.1016/j.crte.2018.09.007
  24. Jiao, S., Zhang, Q., Zhou, Y., Cgen, W., Liu, X., Gopalakrishnan, G., 2018, Progress and challenges of big data research on petrology and geochemistry, Solid Earth Sciences, doi:10.1016/j.sesci.2018.06.002
  25. Koepke, J., Botchamikov, R., Natland, J., 2018, Crystallization of late-stage MORB under varying water activities and redox conditions: Implications for the formation of highly evolved lavas and oxide gabbro in the ocean crust, Lithos, doi:10.1016/j.lithos.2018.10.001
  26. Larrea, P.,Widom, E., Siebe, C., Salinas, S., Kuentz, D., 2018, A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity, Chemical Geology, doi:10.1016/j.chemgeo.2018.10.026
  27. Leuthold, J., Lissenberg, C., O'Driscoll, B., Karakas, O., Falloon, T., Klimentyeva, D., Ulmer, P., 2018, Partial Melting of Lower Oceanic Crust Gabbro: Constraints From Poikilitic Clinopyroxene Primocrysts, Frontiers in Earth Science, doi:10.3389/feart.2018.00015
  28. Li, B., Shi, X., Wang, J., Yan, Q., Liu, C., 2018, Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12–14°S), Journal of Marine Systems, doi:10.1016/j.jmarsys.2018.02.003
  29. Li, Y., Wang, G., Santosh, M., Wang, J., Dong, P. Li, H., 2018, Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southern Central Asian Orogenic Belt, Gondwana Res., doi:10.1016/
  30. Lund, D., Seely, E., Asimow, P., Lewis, M., McCart, S., Mudahy, A., 2018, Anomalous Pacific-Antarctic Ridge volcanism precedes glacial Termination 2, G-Cubed, doi:10.1029/2017GC007341
  31. Manuella, F., Scribano, V., Carbone, F., 2018, Abyssal serpentinites as gigantic factories of marine salts and oil, Marine and Petroleum Geology, doi:10.1016/j.marpetgeo.2018.03.026
  32. McNamara, A.K., 2018, A review of large low shear velocity provinces and ultra low velocity zones, Tectonophysics, doi:10.1016/j.tecto.2018.04.015
  33. Melnik, O., Bindeman, I., 2018 Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon. American Mineralogist, doi:10.2138/am-2018-6182
  34. Menke, W.. 2018, Chapter 10: Factor Analysis, Geophysical Data Analysis (Forth Edition), pp.207-222
  35. Moore,D., McLaughlin, R., Lienkaemper, J., 2018, Serpentinite-rich Gouge in a Creeping Segment of the Bartlett Springs Fault, Northern California: Comparison with SAFOD and Implications for Seismic Hazard, Tectonics, doi: 10.1029/2018TC005307
  36. Mukhopadhyay, R., Ghosh, A., Iher, S., 2018, Chapter 3: Volcanics, The Indian Ocean Nodule Field (second Edition), pp.71-46, doi;10.1016/B978-0-12-805474-1.00003-8
  37. Ou, Q., Wang, Q., Wuman, D., Zhang, C., Hao, L, Dan, W., Jiang, Z., Wu, F., Zhang, H., Xia, X., Ma, L., Long, X., 2018, Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet, GSA Bulletin, doi:10.1130/B31911.1
  38. Putirka, K., Tao, Y., K.R. Hari, M. R. Perfit, M. G. Jackson, R. Arevalo; The mantle source of thermal plumes: Trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don't matter). American Mineralogist ; 103 (8): 1253–1270. doi:
  39. Ranaweera, L., Ota, T., Moriguti, T., Tanaka, R., Nakamura, E., 2018, Circa 1 Ga sub-seafloor hydrothermal alteration imprinted on the Horoman peridotite massif, Scientific Reports, doi:10.1038/s41598-018-28219-x
  40. Roubinet, C., Moreira, M., 2017, Atmospheric noble gases in Mid-Ocean Ridge Basalts: Identification of atmospheric contamination processes, GCA, doi:10.1016/j.gca.2017.10.027
  41. Saccani, E., Dilek, Y., Photiades, A., 2018, Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites, doi:10.1130/L602.1
  42. Sanfilippo, A., Dick, H., Marschall, H., Lissenberg, C., Urann, B., 2018, Emplacement and high‐temperature evolution of gabbros of the 16.5 °N oceanic core complexes (Mid‐Atlantic Ridge): insights into the compositional variability of the lower oceanic crust, G-Cubed, doi: 110.1029/2018GC007512
  43. Secchiari, A., Montanini, A., Bosch, D. et al., 2018, The contrasting geochemical message from the New Caledonia gabbronorites: insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting Contrib Mineral Petrol 173: 66. doi: 10.1007/s00410-018-1496-8
  44. Shervais, J., Reagan, M., Haugen, E., Almeev, R., Pearce, J., Prytulak, J., Ryan, J., Whattam, S., Godard, M., Chapman, T., Li, H., Kurz, W., Nelson, W., Heaton, D., Kirchenbaur, M., Shimizu, K., Sakuyama, T., Li , Y., Vetter, S., 2018, Magmatic Response to Subduction Initiation, Part I: Forearc basalts of the Izu‐Bonin Arc from IODP Expedition 352, G-Cubed, doi: 10.1029/2018GC007731
  45. Sisson, T.W. & Kelemen, P.B., 2018, Near-solidus melts of MORB + 4 wt% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation Contrib Mineral Petrol 173: 70. doi:10.1007/s00410-018-1494-x
  46. Triantafyllou, A., Berger, J., Baele, J., Bruguier, O., Diot, H., Ennih, N., et al., 2018, Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambrian Research, doi:10.1016/j.precamres.2017.10.022
  47. Varas-Reus, M., Garrido, C., Marchesi, C., Bosch, D., Hidas, K., 2018 ,Genesis of Ultra-High Pressure Garnet Pyroxenites in Orogenic Peridotites and its Bearing on the Compositional Heterogeneity of the Earth’s Mantle, GCA, doi:10.1016/j.gca.2018.04.033
  48. Vigneresse, JL. & Truche, L. Chemical descriptors for describing physico-chemical properties with applications to geosciencesJ Mol Model (2018) 24: 231. doi:10.1007/s00894-018-3770-0
  49. Voynets, A., Kostitsyn, Y., Pevzner, M., Goltsman, Y. Perepelov, 2018, Sr-Nd isotopic composition of Neogene-Quaternary volcanic rocks of the Sredinny Range, Kamchatka: Implications for magma generation in the back-arc, 10th Biannual Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2018),
  50. Ware, B., Jourdan, F., Merle, R., Chiaradia, M., Hodges, K., 2018, The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the oldest and most compositionally homogenous province of the Phanerozoic, Journal of Petrology, doi:10.1093/petrology/egy040
  51. Wei, Y., Mukasa, S., Zheng, J., Fahnestock, M., Bryce, J., 2018, Phanerozoic lower crustal growth from heterogeneous mantle beneath the North China Craton: Insights from the diverse Hannuoba pyroxenite xenoliths, Lithos, doi:10.1016/j.lithos.2018.11.001
  52. Winslow, H., 2018, A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes, Master's Thesis, University of Nevada, Reno, 113 pp.,
  53. Xia, L., Lia, X., 2018, Basalt geochemistry as a diagnostic indicator of tectonic setting, Gondwana Research, doi:10.1016/
  54. Yao, J-H., Zhu, W-G., Li, C., Zhong, H., Bai, Z-J, Ripley, E., Li, C., 2018, Petrogenesis and Ore Genesis of the Lengshuiqing Magmatic Sulfide Deposit in Southwest China: Constraints from Chalcophile Elements (PGE, Se) and Sr-Nd-Os-S Isotopes, Economic Geology, doi:10.5382/econgeo.2018.4566
  55. Yoshida, K., Kuwatani, T., Yasumoto, A.,Haraguchi, S.,Ueki, K.,Iwamori, H., 2018, GEOFCM: a new method for statistical classification of geochemical data using spatial contextual information, J. Mineralological and Petrological Sciences, doi:10.2465/jmps.171127
  56. Yu, X., Zeng, G., Chen, L-H., Wang, X-J., Liu, J-Q., Xie, L-W, Yang, T., 2018, Evidence for rutile-bearing eclogite in the mantle sources of the Cenozoic Zhejiang basalts, eastern China, Lithos, doi:10.1016/j.lithos.2018.11.003
  57. Yu, Y., Sun, M., Yuan, C., Zhao, G., Huang, X-L, Rojas-Agramonte, Y., Chen, Q., 2018, Evolution of the middle Paleozoic magmatism in the Chinese Altai: Constraints on the crustal differentiation at shallow depth in the accretionary orogen, Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2018.07.026
  58. Zhang, G., Luo, Q., Zhao, J., Jackson, M., Guo, L., Zhong, L., 2018 Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, doi:10.1016/j.epsl.2018.02.040
  59. Zhang, H., Zhu, Y-F., Geology and geochemistry of pillow basalt in the Huilvshan region (west Junggar, China): Implications for magma source and tectonic setting, Can J Earth Sci, doi:10.1139/cjes-2018-0090
  60. Zhang, W., Zeng, Z., Cui, L., Yin, X., 2018, Geochemical Constrains on MORB Composition and Magma Sources at East Pacific Rise Between 1°S and 2°S, J. Ocean Univ. China, doi:10.1007/s11802-018-3223-5

PetDB: 2017

  1. Alemayehu M, Zhang H-, Aulbach S. Persistence of fertile and hydrous lithospheric mantle beneath the northwestern Ethiopian plateau: Evidence from modal, trace element and Sr-Nd-Hf isotopic compositions of amphibole-bearing mantle xenoliths. Lithos. 2017; 284-285, doi:10.1016/j.lithos.2017.04.021
  2. Aulbach S, Jacob DJ, Cartigny P, Stern RA, Simonetti SS, Viljoen KS. Eclogite xenoliths from Orapa: Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin. Geochimica et Cosmochimica Acta. 2017; 213, doi:10.1016/j.gca.2017.06.038
  3. Bakke VN. Bakke,Volcanic rocks at the Møre Marginal High: geochemistry, petrogenesis and emplacement mechanisms.. Vol M. Sci. Bergen: University of Bergen;  2017,
  4. Baziotis I, Economou-Eliopoulos M, Asimow PD. Ultramafic lavas and high-Mg basaltic dykes from the Othris ophiolite complex, Greece. Lithos. 2017; 288-289, doi:10.1016/j.lithos.2017.07.015
  5. Bonamici C, Kinman W, Fournelle J, Zimmer M, Pollington A, Rector K. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests. Contributions to Mineralogy and Petrology. 2017; 172(2), doi:10.1007/s00410-016-1320-2
  6. Borreggine M, Myhre SE, Mislan AK, Deutsch C, Davis CV. A database of paleoceanographic sediment cores from the North Pacific, 1951–2016. Earth System Science Data. 2017; 9(2):739-49, doi:10.5194/essd-9-739-2017
  7. Choi H-, Choi SH, Schiano P, Cho M, Cluzel N, Devidal J-, et al. Geochemistry of olivine-hosted melt inclusions in the Baekdusan (Changbaishan) basalts: Implications for recycling of oceanic crustal materials into the mantle source. Lithos. 2017; 284-285, doi: 10.1016/j.lithos.2017.04.006
  8. Cousens B, Weis D, Constantin M, Scott S. Radiogenic isotopes in enriched mid-ocean ridge basalts from explorer ridge, northeast pacific ocean. Geochimica et Cosmochimica Acta. 2017; 213, doi:/10.1016/j.gca.2017.06.032
  9. Dokuz A, Aydincakir E, Kandemir R, Karsli O, Siebel W, Derman A, et al. Late Jurassic Magmatism and Stratigraphy in the Eastern Sakarya Zone, Turkey: Evidence for the Slab Breakoff of Paleotethyan Oceanic Lithosphere. The Journal of Geology. 2017; 125(1), doi:10.1086/689552
  10. Dumond G, Williams ML, Baldwin JA, Jercinovic MJ. Backarc origin for Neoarchean ultrahigh-temperature metamorphism, eclogitization, and orogenic root growth. Geology. 2017; 45(10):943-6, doi:10.1130/G39254.1
  11. Dygert N, Kelemen, P., Liang Y. Spatial variations in cooling rate in the mantle section of the Samail ophiolite in Oman: Implications for formation of lithosphere at mid-ocean ridges. EPSL. 2017; 465(1), doi:10.1016/j.epsl.2017.02.038
  12. Ferracutti G, Bjerg E, Hauzenberger C, Mogessie A, Cacace F, Asiain L. Meso to Neoproterozoic layered mafic-ultramafic rocks from the Virorco back-arc intrusion, Argentina. Journal of South American Earth Sciences. 2017; 79, doi:10.1016/j.jsames.2017.09.016
  13. Garcon M, Carlson R, Shirey S, Arndt N, Horan M, Mock T. Erosion of Archean continents: The Sm-Nd and Lu-Hf isotopic record of Barberton sedimentary rocks. G-Cubed. 2017; 206, doi:10.1016/j.gca.2017.03.006
  14. Greber ND, Dauphas N, Bekker A, Ptáček MP, Bindeman IN, Hofmann A. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science. 2017; 3575843(6357):1271-4, doi:10.1126/science.aan8086
  15. Harrison L, Weis D, Garcia M. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. EPSL. 2017; 463, doi:10.1016/j.epsl.2017.01.027
  16. Heinonen JS, Fusswinkel T. High Ni and low Mn/Fe in olivine phenocrysts of the Karoo meimechites do not reflect pyroxenitic mantle sources. Chemical Geology. 2017; 467,doi:10.1016/j.chemgeo.2017.08.002
  17. Hong T, Xu X-, You J, Wu C, Li H, Ke Q. Cu and Mo re-enrichment during ductile deformation: A case study of the Yuleken porphyry Cu deposit, Eastern Junggar, NW China. Journal of Asian Earth Sciences. 2017, doi:10.1016/j.jseaes.2017.12.004
  18. Hong L-, Zhang Y-, Xu Y-, Ren Z-, Ma Q, Xie W. Hydrous orthopyroxene-rich pyroxenite source of the Xinkailing high magnesium andesites, Western Liaoning: Implications for the subduction-modified lithospheric mantle and the destruction mechanism of the North China Craton. Lithos. 2017; 282-283, doi:10.1016/j.lithos.2017.02.014
  19. Huang S, Zheng YF. Mantle geochemistry: Insights from ocean island basalts. Science China Earth Sciences. 2017, doi:10.1007/s11430-017-9090-4
  20. Hwang L, Fish A, Soito L, Smith MK, Kellogg LH. Software and the Scientist: Coding and Citation Practices in Geodynamics. Earth and Space Science. 2017; 4, doi:10.1002/2016EA000225
  21. Iwamori H, Yoshida K, Nakamura H, Kuwatani T, Hamada M, Haraguchi S, et al. Classification of geochemical data based on multivariate statistical analyses: Complementary roles of cluster, principal component, and independent component analyses. G-Cubed. 2017; 18(3), doi:10.1002/2016GC006663
  22. Janny P, Kirchner M, Ogungbuyi P, Harris C, BELL D. Geochemistry of the Namaqualand, Bushmanland and Warmbad melilitite and kimberlite provinces of South Africa and Namibia: the southern extension of the African kimberlitic megalineament.;  2017, doi:10.29173/ikc3982
  23. Keathley DE. Geochemical Characterization of a Feeder-Dike System in the Seiland Igneous Complex, Northern Norway: Implications for Geotectonic Environment of Emplacement. Vol MS. Texas Tech University;  2017.
  24. Kimura J, Gill JB, van Keken P, Kawabata H, Skora S. Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle. G-Cubed. 2017; 18(2), doi:10.1002/2016GC006696
  25. Kimura J-, Sakuyama T, Miyazaki T, Vaglarov BS, Fukao Y, Stern RJ. Plume - stagnant slab - lithosphere interactions: Origin of the late Cenozoic intra-plate basalts on the East Eurasia margin. Lithos. 2017; 300-301, doi:10.1016/j.lithos.2017.12.003
  26. Klügel A, Galipp K, Hoernle K, Hauff F, Groom S. Geochemical and volcanological evolution of La Palma, Canary Islands. Journal of Petrology. 2017, doi:10.1093/petrology/egx052
  27. Liu B, Liang Y. The prevalence of kilometer-scale heterogeneity in the source region of MORB upper mantle. Science Advances. 2017; 3(11), doi:10.1126/sciadv.1701872
  28. Liu C, Knoll AH, Hazen RM. Geochemical and mineralogical evidence that Rodinian assembly was unique. Nature Communications. 2017; (1), doi:10.1038/s41467-017-02095-x
  29. Liu X, Xiao W, Xu J, Castillo P, Shi Y. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China. Gondwana Research. 2017; 48, doi:10.1016/
  30. Luo Q, Zhang GL. Control of subduction rate on Tonga-Kermadec arc magmatism. Chinese Journal of Oceanology and Limnology. 2017; 54, doi:10.1007/s00343-018-7026-8
  31. Malatesta C, Federico L, Crispini L, Capponi G. Fluid-controlled deformation in blueschist-facies conditions: plastic vs brittle behaviour in a brecciated mylonite (Voltri Massif, Western Alps, Italy. Geological Magazine. 2017:1-21, doi:10.1017/S0016756816001163
  32. Marschall H, Wanless D, Shimizu N, Pogge von Strandmann P, Elliot T, Monteleone B. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. GCA. 2017; 207(102), doi:10.1016/j.gca.2017.03.028
  33. McCubbin FM, Vander Kaaden KE, Peplowski PN, Bell AS, Nittler LR, Boyce JW, et al. A low O/Si ratio on the surface of Mercury: Evidence for silicon smelting? Journal of Geophysical Research: Planets. 2017; 122. 10.1002/2017JE005367
  34. Melekestseva IY, Maslennikov VV, Tretyakov GA, Nimis P, Beltenev VE, Rozhdestvenskaya II, et al. Gold- and Silver-Rich Massive Sulfides from the Semenov-2 Hydrothermal Field, 13°31.13N, Mid-Atlantic Ridge: A Case of Magmatic Contribution? Economic Geology. 2017; 112(4):741-73, doi:10.2113/econgeo.112.4.741
  35. Migdisova NA, Sobolev AV, Sushchevskaya NM, Dubinin EP, Kuz’min DV. Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts. Russian Geology and Geophysics. 2017; 58(11):1289-304, doi:10.1016/j.rgg.2017.02.004
  36. Moyen J-, Laurent O. Archaean tectonic systems: A view from igneous rocks. Lithos. 2017, doi:10.1016/j.lithos.2017.11.038.
  37. Olierook H, Merle R, Jourdan F. Toward a Greater Kerguelen Large Igneous Province: Evolving mantle source contributions in and around the Indian Ocean. Lithos. 2017; 282-283, doi:10.1016/j.lithos.2017.03.007
  38. Owen-Smith TM, Ashwal LD, Sudo M, Trumbull RB. Age and Petrogenesis of the Doros Complex, Namibia, and Implications for Early Plume-derived Melts in the Parana-Etendeka LIP. Journal of Petrology. 2017, doi:10.1093/petrology/egx021
  39. Plissart G, Monnier C, Diot H, Mărunţiu M, Berger J, Triantafyllou A. Petrology, geochemistry and Sm-Nd analyses on the Balkan-Carpathian Ophiolite (BCO − Romania, Serbia, Bulgaria): remnants of a Devonian back-arc basin in the easternmost part of the Variscan domain. Journal of Geodynamics. 2017; 105, doi:10.1016/j.jog.2017.01.001
  40. Reid MR, Schleiffarth KW, Cosca MA, Delph JR, Blichert-Toft J, Cooper KM. Shallow melting of MORB-like mantle under hot continental lithosphere, Central Anatolia. Geochemistry, Geophysics, Geosystems. 2017; 18, doi:10.1002/2016GC006772
  41. Ribeiro LP, Martins S, Hildenbrand A, Madureira P, Mata J. The genetic link between the Azores Archipelago and the Southern Azores Seamount Chain (SASC): The elemental, isotopic and chronological evidences. Lithos. 2017; 294-295, doi:10.1016/j.lithos.2017.08.019
  42. Scott J. Towards a Petrologically Constrained Thermal Model of Mid-Ocean Ridges. Vol PhD. The Ohio State University;  2017.
  43. Suo Y, Li S, Li X, Zhang Z, Ding D. The potential hydrothermal systems unexplored in the Southwest Indian Ocean. Marine Geophysical Research. 2017, doi:10.1007/s11001-016-9300-5
  44. Ueki, K., Hino, H., Kuwatani, T., 2017, Geochemical discrimination and characteristics of magmatic tectonic settings; a machine learning-based approach, ArXiv, doi: 10.1029/2017GC007401
  45. Voigt M, Coogan LA, von der Handt A. Experimental investigation of the stability of clinopyroxene in mid-ocean ridge basalts: The role of Cr and Ca/Al. Lithos. 2017; 274-275, doi:10.1016/j.lithos.2017.01.003
  46. Wang X, Xu J, Liu M, Wei Z, Bu W, Hong T. An Ontology-Based Approach for Marine Geochemical Data Interoperation. IEEE Access. 2017; 5:13364-71, doi: 10.1109/ACCESS.2017.2724641
  47. Wang H, Xiaohu L, Chu F, Li Z, Wang J, Yu X, et al. Mineralogy, geochemistry, and Sr-Pb isotopic geochemistry of hydrothermal massive sulfides from the 15.2°S hydrothermal field, Mid-Atlantic Ridge. J Marine Systems. 2017; 180, doi:10.1016/j.jmarsys.2017.02.010
  48. Wanless VD, Behn MD. Spreading rate-dependent variations in crystallization along the global mid-ocean ridge system. Geochemistry, Geophysics, Geosystems. 2017;18, doi:10.1002/2017GC006924
  49. Wibowo H. Petrological and Geochemical Study of Sundoro Volcano, Central Java, Indonesia : Temporal Variation in Differentiation and Source Processes in the Growth of an Individual Volcano. Vol PhD. Hokkaido;  2017, doi:10.14943/doctoral.k12699
  50. Wolfson-Schwehr M, Boettcher MS, Behn MD. Thermal segmentation of mid-ocean ridge-transform faults. Geochemistry, Geophysics, Geosystems. 2017; 18(9):3405-18, doi:10.1002/2017GC006967
  51. Xu Y, Liu C-, Chen Y, Guo S, Wang J-, Sein K. Petrogenesis and tectonic implications of gabbro and plagiogranite intrusions in mantle peridotites of the Myitkyina ophiolite, Myanmar. Lithos. 2017, doi:10.1016/j.lithos.2017.04.014
  52. Xu Z, Zheng Y-. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. Journal of Asian Earth Sciences. 2017; 145, doi:10.1016/j.jseaes.2017.03.010
  53. Yang AY, Zhao T-, Zhou M-, Deng X-. Isotopically enriched N-MORB: A new geochemical signature of off-axis plume-ridge interaction-A case study at 50°28E, Southwest Indian Ridge. Journal of Geophysical Research: Solid Earth. 2017; 122(1):191-213, doi:10.1002/2016JB013284
  54. Yang S. Mantle source compositions by LA-ICP-MS analyses of volcanic glasses from Hawaii and the mid-ocean ridges. Vol PhD. Florida State University;  2017,
  55. Yang W-, Niu H-, Hollings P, Zurevinski SE, Li N-. The role of recycled oceanic crust in the generation of alkaline A-type granites. Journal of Geophysical Research: Solid Earth. 2017, doi:10.1002/2017JB014921
  56. Yu Y, Sun M, Huang X-, Zhao G, Li P, Long X, et al. Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai. Lithos. 2017; 284-285, doi:10.1016/j.lithos.2017.04.004
  57. Zhang C, Wang L-, Marks M, France L, Koepke J. Volatiles (CO2, S, F, Cl, Br) in the dike-gabbro transition zone at IODP Hole 1256D: Magmatic imprint versus hydrothermal influence at fast-spreading mid-ocean ridge. Chemical Geology. 2017; 459, doi:10.1016/j.chemgeo.2017.04.002
  58. Zhang G-, Chen L-, Jackson MG, Hofmann AW. Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience. 2017, doi:10.1038/ngeo2877
  59. Zhang H, Zhu Y. Geochronology and geochemistry of the Huilvshan gabbro in west Junggar (NW China): Implications for magma process and tectonic regime. Mineralogy and Petrology. 2017, doi:10.1007/s00710-017-0543-x
  60. Zhang Y, Zeng ZG, Li X, Yin X, Wang X, Chen S. High-potassium volcanic rocks from the Okinawa Trough: Implications for a cryptic potassium-rich and DUPAL-like source. Geological Journal. 2017, doi:10.1002/gj.3000
  61. Zhao X, Cao HH, Mi X, Evans NJ, Qi YH, Huang F, et al. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism. Contributions to Mineralogy and Petrology. 2017; 172(40), doi:10.1007/s00410-017-1356-y
  62. Zhou Q, Liu Z, Lai Y, Wang G-, Liao Z, Li Y-, et al. Petrogenesis of mafic and felsic rocks from the Comei large igneous province, South Tibet: Implications for the initial activity of the Kerguelen plume. GSA Bulletin. 2017, doi:10.1130/b31653.1
  63. van der Zwan FM, Devey CW, Hansteen TH, Almeev RR, Augustin N, Frische M, et al. Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions. Contributions to Mineralogy and Petrology. 2017, doi:10.1007/s00410-017-1418-1

PetDB: 2016

  1. Alemayehu M, Zhang H-, Sakyi PA. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths. International Journal of Earth Sciences. 2016, doi:10.1007/s00531-016-1342-z
  2. Angiboust S, Hyppolito T, Glodny J, Cambeses A, Garcia-Casco A, Calderón M, et al. Hot subduction in the middle Jurassic and partial melting of oceanic crust in Chilean Patagonia. Gondwana Research. 2016; 42, doi:10.1016/
  3. Aulbach S, Jacob DE. Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos. 2016; 262, doi:10.1016/
  4. Aulbach S, Massuyeau M, Gaillard F. Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models. Lithos. 2016; 268, doi:10.1016/j.lithos.2016.11.004
  5. Chatterjee R, Lassiter JC. 186Os/188Os variations in upper mantle peridotites: Constraints on the Pt/Os ratio of primitive upper mantle, and implications for late veneer accretion and mantle mixing timescales. Chemical Geology. 2016; 442:11-22, doi:10.1016/j.chemgeo.2016.08.033
  6. Chavrit D, Burgess R, Sumino H, Teagle DA, Droop G, Shimizu A, et al. The contribution of the hydrothermal alteration of the ocean crust to the deep halogen and noble gas cycles. Geochimica et Cosmochimica Acta. 2016; 183, doi:10.1016/j.gca.2016.03.014
  7. Chen L, Tang L, Yu X, Dong Y. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data. Marine Geophysical Research. 2016, doi:10.1007/s11001-016-9292-1
  8. Cheng H, Zhou H, Yang Q, Zhang L, Ji F, Dick H. Jurassic zircons from the Southwest Indian Ridge. Scientific Reports. 2016; 6:26260, doi:10.1038/srep26260
  9. Coogan LA, Dosso SE. Quantifying Parental MORB Trace Element Compositions from the Eruptive Products of Realistic Magma Chambers: Parental EPR MORB are Depleted. Journal of Petrology. 2016:egw059, doi:10.1093/petrology/egw059
  10. Day JM. Evidence against an ancient non-chondritic mantle source for North Atlantic Igneous Province lavas. Chemical Geology. 2016; 440, doi:10.1016/j.chemgeo.2016.07.002
  11. Doucet LS, Mattielli N, Ionov DA, Debouge W, Golovin AV. Zn isotopic heterogeneity in the mantle: A melting control? Earth and Planetary Science Letters. 2016; 451:232-40, doi:10.1016/j.epsl.2016.06.040
  12. Duncan RA, Kent AJ, Thornber CR, Schlieder TD, Al-Amri AM. Timing and composition of continental volcanism at Harrat Hutaymah, western Saudi Arabia. Journal of Volcanology and Geothermal Research. 2016; 313, doi: 10.1016/j.jvolgeores.2016.01.010
  13. Escuder-Viruete J, Castillo-Carrión M. Subduction of fore-arc crust beneath an intra-oceanic arc: The high-P Cuaba mafic gneisess and amphibolites of the Rio San Juan Complex, Dominican Republic. Lithos. 2016; 262, doi:10.1016/j.lithos.2016.07.024
  14. Freymuth H, Ivko B, Gill J, Tamura Y. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochimica et Cosmochimica Acta. 2016; 186, doi:10.1016/j.gca.2016.04.034
  15. Gao C, Dick HJ, Liu Y, Zhou H. Melt Extraction and Mantle Source at a Southwest Indian Ridge Dragon Bone Amagmatic Segment on the Marion Rise. Lithos. 2016; 246-247, doi:10.1016/j.lithos.2015.12.007
  16. Gao R, Lassiter JC, Barnes JD, Clague DA, Bohrson WA. Geochemical investigation of Gabbroic Xenoliths from Hualalai Volcano: Implications for lower oceanic crust accretion and Hualalai Volcano magma storage system. Earth and Planetary Science Letters. 2016; 442:162-72, doi:10.1016/j.epsl.2016.02.043
  17. Giovas CM, Kamenov GD, Fitzpatrick SM, Krigbaum J. Sr and Pb isotopic investigation of mammal introductions: Pre-Columbian zoogeographic records from the Lesser Antilles, West Indies. Journal of Archaeological Science. 2016; 69:39-53, doi:10.1016/j.jas.2016.03.006
  18. Gómez-Tuena A, Mori L, Straub SM. Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth-Science Reviews. 2016,doi:10.1016/j.earscirev.2016.12.006
  19. Haase KM, Freund S, Beier C, Koepke J, Erdmann M, Hauff F. Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite. Contributions to Mineralogy and Petrology. 2016; 171(5), doi:10.1007/s00410-016-1261-9
  20. Halldórsson SA, Barnes JD, Stefánsson A, Hilton DR, Hauri EH, Marshall EW. Subducted lithosphere controls halogen enrichments in the Iceland mantle plume source. Geology. 2016; 44(8):679-82, doi:10.1130/g37924.1
  21. van Heck HJ, Davies HJ, Elliott T, Porcelli D. Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA. Geoscientific Model Development. 2016; 9(4):1399-411, doi:10.5194/gmd-9-1399-2016
  22. Hoernle K, Schwindrofska A, Werner R, van den Bogaard P, Hauff F, Uenzelmann-Neben G, et al. Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland Fracture Zone. Geology. 2016, doi:10.1130/G37582.1
  23. Höfig T, Hoernle K, Hauff F, Frank M. Hydrothermal versus active margin sediment supply to the eastern equatorial Pacific over the past 23 million years traced by radiogenic Pb isotopes: Paleoceanographic and paleoclimatic implications. Geochimica et Cosmochimica Acta. 2016; 190, doi: /10.1016/j.gca.2016.05.003
  24. Huang S, Humayun M. Petrogenesis of High-CaO Lavas from Muna Kea, Hawaii: Constraints from Trace Element Abundances. Geochimica et Cosmochimica Acta. 2016; 185, doi: 10.1016/j.gca.2016.03.039
  25. Husen A, Kamenetsky VS, Everard J, Kamenetsky MB. Transition from ultra-enriched to ultra-depleted primary MORB melts in a single volcanic suite (Macquarie Island, SW Pacific): implications for mantle source, melting process and plumbing system. Geochimica et Cosmochimica Acta. 2016; 185, doi:10.1016/j.gca.2016.02.031
  26. Kusano Y, Umino S, Shinjo R, Ikei A, Adachi Y, Miyashita S, et al. Contribution of slab-derived fluid and sedimentary melt in the incipient arc magmas with development of the paleo-arc in the Oman Ophiolite. Chemical Geology. 2016; 449, doi:10.1016/j.chemgeo.2016.12.012
  27. Labidi J, Cartigny P. Negligible sulfur isotope fractionation during partial melting: Evidence from Garrett transform fault basalts, implications for the late-veneer and the hadean matte. Earth and Planetary Science Letters. 2016; 451:196-207, doi:10.1016/j.epsl.2016.07.012
  28. Lissenberg C, MacLeod C. A Reactive Porous Flow Control on Mid-ocean Ridge Magmatic Evolution. J Petrol. 2016; 57(11 & 12), doi:10.1093/petrology/egw074
  29. Liu C, Zhao G, Liu F, Shi J. Constraints of volcanic rocks of the Wutai complex (Shanxi Province, Northern China) on a giant late Neoarchean intra-oceanic arc system in the Trans-North China Orogen. Journal of Asian Earth Sciences. 2016; 123,doi:10.1016/j.jseaes.2016.04.006
  30. Lundstrom CC, Glazner AF. Silicic Magmatism and the Volcanic–Plutonic Connection. Elements. 2016; 12(2):91-6, doi:10.2113/gselements.12.2.91
  31. Ma Q, Xu Y-, Zheng J-, Sun M, Griffin WL, Wei Y, et al. High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber. Lithos. 2016; 260, doi:10.1016/j.lithos.2016.05.024
  32. Mao Y-, Qin K-, Tang D-, Feng H-, Xue S-. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China. Journal of Asian Earth Sciences. 2016; 129, doi:10.1016/j.jseaes.2016.07.028
  33. McNutt M, Lehnert K, Hanson B, Nosek BA, Ellison AM, King JL. Liberating field science samples and data. Science. 2016; 351(6277):1024-6, doi: 10.1126/science.aad7048
  34. Mullen EK, Weis D, Marsh NB, Martindale M. Primitive arc magma diversity: New geochemical insights in the Cascade Arc. Chemical Geology. 2016; 448, doi:10.1016/j.chemgeo.2016.11.006
  35. Nicolle M, Jousselin D, Reisberg L, Bosch D, Stephant A. Major and trace element and Sr and Nd isotopic results from mantle diapirs in the Oman ophiolite: Implications for off-axis magmatic processes. Earth and Planetary Science Letters. 2016; 437, doi;10.1016/j.epsl.2015.12.005
  36. Niu Y. The Meaning of Global Ocean Ridge Basalt Major Element Compositions. J Petrol. 2016; 57(11 & 12), doi:10.1093/petrology/egw073
  37. Paquet M, Cannat M, Brunelli D, Hamelin C, Humler E. Effect of melt/mantle interactions on MORB chemistry at the easternmost Southwest Indian Ridge (61 to 67°E). Geochemistry, Geophysics, Geosystems. 2016; 17(11), doi:10.1002/2016GC006385
  38. Petrelli M, Perugini D. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data. Contributions to Mineralogy and Petrology. 2016; 171(10), doi:10.1007/s00410-016-1292-2
  39. Prytulak J, Sossi PA, Halliday AN, Plank T, Savage PS, Woodhead JD. Stable vanadium isotopes as a redox proxy in magmatic systems? Geochemical Perspectives Letters. 2016:75-84, doi:10.7185/geochemlet.1708
  40. Rasoazanamparany C, Widom E, Siebe C, Guilbaud M-, Spicuzza MJ, Valley JW, et al. Temporal and compositional evolution of Jorullo volcano, Mexico: Implications for magmatic processes associated with a monogenetic eruption. Chemical Geology. 2016; 434, doi;10.1016/j.chemgeo.2016.04.004
  41. Regelous M, Weinzierl CG, Haase KM. Controls on melting at spreading ridges from correlated abyssal peridotite – mid-ocean ridge basalt compositions. Earth and Planetary Science Letters. 2016; 449:1-11, doi;10.1016/j.epsl.2016.05.017
  42. Ruzié-Hamilton L, Clay PL, Burgess R, Joachim B, Ballentine CJ, Turner G. Determination of halogen abundances in terrestrial and extraterrestrial samples by the analysis of noble gases produced by neutron irradiation. Chemical Geology. 2016; 437, doi;10.1016/j.chemgeo.2016.05.003
  43. Sager WW, Sano T, Geldmacher J. Formation and evolution of Shatsky Rise oceanic plateau: Insights from IODP Expedition 324 and recent geophysical cruises. Earth-Science Reviews. 2016; 159, doi:10.1016/j.earscirev.2016.05.011
  44. Schlindwein V, Schmid F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature. 2016; 535(7611):276-9,doi:10.1038/nature18277
  45. Schwindrofska A, Hoernle K, Hauff F, van den Bogaard P, Werner R, Garbe-Schönberg D. Origin of enriched components in the South Atlantic: Evidence from 40 Ma geochemical zonation of the Discovery Seamounts. Earth and Planetary Science Letters. 2016; 441:167-77, doi;10.1016/j.epsl.2016.02.041
  46. Secchiari A, Montanini A, Bosch D, Macera P, Cluzel D. Melt extraction and enrichment processes in the New Caledonia lherzolites: Evidence from geochemical and Sr-Nd isotope data. Lithos. 2016; 260, doi:10.1016/j.lithos.2016.04.030
  47. Sleeper JD, Martinez F, Arculus R. The Fonualei Rift and Spreading Center: Effects of ultraslow spreading and arc proximity on back-arc crustal accretion. Journal of Geophysical Research: Solid Earth. 2016, doi:10.1002/2016JB013050
  48. Strong DT, Turnbull RE, Haubrock S, Mortimer N. Petlab: New Zealand’s national rock catalogue and geoanalytical database. New Zealand Journal of Geology and Geophysics. 2016:1-7, doi:10.1080/00288306.2016.1157086
  49. Tang Q, Zhang Z, Li C, Wang Y, Ripley EM. Neoproterozoic subduction-related basaltic magmatism in the northern margin of the Tarim Craton: Implications for Rodinia reconstruction. Precambrian Research. 2016; 286:370-8, doi:10.1016/j.precamres.2016.10.012
  50. Tejada ML, Geldmacher J, Hauff F, Heaton D, Koppers AA, Garbe-Schönberg D, et al. Geochemistry and Age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises. Geochimica et Cosmochimica Acta. 2016; 185, doi:10.1016/j.gca.2016.04.006
  51. Tunini L, Jiménez-Munt I, Fernandez M, Vergés J, Villaseñor A, Melchiorre M, et al. Geophysical-petrological model of the crust and upper mantle in the India-Eurasia collision zone. Tectonics. 2016; 35(7):1642-69, doi:10.1002/2016TC004161
  52. Wang X, Hong T, Xu J, Liu M, Liang H. Semantic Mediation of Metadata for Marine Geochemical Data Integration. In: the The 11th International Knowledge Management in Organizations ConferenceProceedings of the The 11th International Knowledge Management in Organizations Conference on The changing face of Knowledge Management Impacting Society - KMO '16. Hagen, GermanyNew York, New York, USA: ACM Press;  2016. p. 1-5, doi;10.1145/2925995.2926025
  53. Wang Z-, Liu S-, Liu J, Huang J, Xiao Y, Chu Z-, et al. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochimica et Cosmochimica Acta. 2016; 198, doi:10.1016/j.gca.2016.11.014
  54. Warren JM. Global Variations in Abyssal Peridotite Compositions. Lithos. 2016; 248-251, doi:10.1016/j.lithos.2015.12.023
  55. Waterton P, Pearson GD, Kjarsgaard B, Hulbert L, Locock A, Parman S, et al. Age, Origin, and Thermal Evolution of the ultra-fresh~1.9Ga Winnipegosis Komatiites, Manitoba, Canada. Lithos. 2016; 268-271, doi:10.1016/j.lithos.2016.10.033
  56. Weisler MI, Bolhar R, Ma J, St Pierre E, Sheppard P, Walter RK, et al. Cook Island artifact geochemistry demonstrates spatial and temporal extent of pre-European interarchipelago voyaging in East Polynesia. Proceedings of the National Academy of Sciences. 2016; 113(29):8150-5, doi: 10.1073/pnas.1608130113
  57. Weiss Y, Class C, Goldstein SL, Hanyu T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature. 2016; 537, doi:10.1038/nature19113
  58. Xu Z, Zheng Y-, Zhao Z-. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos. 2016; 268-271, doi:10.1016/j.lithos.2016.11.006
  59. Zeng ZG, Ma Y, Chen S, Selby D, Wang X, Yin X. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation. Ore Geology Reviews. 2016; 87, doi:10.1016/j.oregeorev.2016.10.014
  60. Zerda CL. An Integrated Petrological and Geochemical Approach to Understanding Magmatism, Along the East Pacific Rise. Vol Master of Science. The Ohio State University;  2016,!etd.send_file?accession=osu1471827298&disposition=inline
  61. Zhang G-, Li C. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough. Scientific Reports. 2016; 6:37561, doi:10.1038/srep37561 (2016)
  62. Zhang GL. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous. Acta Oceanologica Sinica. 2016; 35(4):19-25, doi:10.1007/s13131-016-0839-4
  63. Zhang JB, Liu Y, Ling WL, Gao S. Pressure-dependent compatibility of iron in garnet: insights into the origin of ferropicritic melt. Geochimica et Cosmochimica Acta. 2016; 197, doi:10.1016/j.gca.2016.10.047

PetDB: 2015

  1. Beyer C, Frost DJ, Miyajima N. Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites. Contributions to Mineralogy and Petrology. 2015; 169(2), doi:10.1007/s00410-015-1113-z
  2. Brady JB. Assuring the future of mineralogy. American Mineralogist. 2015; 100(7):1337-40, doi:10.2138/am-2015-5164
  3. Cann JR, Smith DK, Escartin J, Schouten H. Tectonic evolution of 200 km of Mid-Atlantic Ridge over 10 million years-Interplay of volcanism and faulting. Geochemistry, Geophysics, Geosystems. 2015;16, doi:10.1002/2015GC005797
  4. Carbotte SM, Smith DK, Cannat M, Klein EM. Tectonic and magmatic segmentation of the Global Ocean Ridge System: a synthesis of observations. Geological Society, London, Special Publications. 2015, doi:10.1144/SP420.5
  5. Carter LB, Dasgupta R. Hydrous basalt–limestone interaction at crustal conditions: Implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs. Earth and Planetary Science Letters. 2015; 427:202-14, doi:10.1016/j.epsl.2015.06.053
  6. Condie K. Changing Tectonic Settings Through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research. 2015, doi:10.1016/j.precamres.2015.05.004
  7. Coogan LA, O’Hara MJ. MORB differentiation: In situ crystallization in replenished-tapped magma chambers. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.03.010
  8. Cooper CM, Mittelstaedt E, Currie CA, van Wijk J, Kellogg LK, Hwang L, et al. Moving lithospheric modeling forward: Attributes of a community computer code. GSA Today. 2015:42-3, doi:10.1130/GSATG230GW.1
  9. Dekov VM, Lalonde SV, Kamenov GD, Bayon G, Shanks WC, Fortin D, et al. Geochemistry and mineralogy of a silica chimney from an inactive seafloor hydrothermal field (East Pacific Rise, 18°S). Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.09.017
  10. Delavault H, Chauvel C, Sobolev A, Batanova V. Combined petrological, geochemical and isotopic modeling of a plume source: Example of Gambier Island, Pitcairn chain. Earth and Planetary Science Letters. 2015; 426:23-35, doi:10.1016/j.epsl.2015.06.013
  11. Eason DE, Dunn RA. Petrogenesis and structure of oceanic crust in the Lau back-arc basin. Earth and Planetary Science Letters. 2015; 429:128-38, doi:10.1016/j.epsl.2015.07.065
  12. Ferreira Silva Da Cruz MI. Mineralogy and Geochemistry of contrasting hydrothermal systems on the AMOR: The Jan Mayen and Loki's Castle vent fields. Vol PhD. Universidade de Lisboa;  2015.
  13. Frey FA, Nobre Silva IG, Huang S, Pringle MS, Meleney PR, Weis D. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth and Planetary Science Letters. 2015, doi:10.1016/j.epsl.2015.06.005
  14. Gannoun A, Burton KW, Day JM, Harvey J, Schiano P, Parkinson I. Highly Siderophile Element and Os Isotope Systematics of Volcanic Rocks at Divergent and Convergent Plate Boundaries and in Intraplate Settings. Reviews in Mineralogy and Geochemistry. 2015; 81(1):651-724, doi:10.2138/rmg.2016.81.11
  15. Garcia MO, Smith JR, Tree JP, Weis D, Harrison L, Jicha BR. Petrology, geochemistry, and ages of lavas from Northwest Hawaiian Ridge volcanoes. Geological Society of America Special Papers;  2015, doi:10.1130/2015.2511(01)
  16. Gillis KM, Coogan LA, Brant C. The role of sedimentation history and lithology on fluid flow and reactions in off-axis hydrothermal systems: A perspective from the Troodos ophiolite. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.09.006
  17. Green DH, Falloon TJ. Mantle-derived magmas: intraplate, hot-spots and mid-ocean ridges. Science Bulletin. 2015; 60(22):1873-900, doi:10.1007/s11434-015-0920-y
  18. Grimes CB, Wooden JL, Cheadle MJ, John BE. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology. 2015; 170(5-6), doi:10.1007/s00410-015-1199-3
  19. Hayes CT, Fitzsimmons JN, Boyle EA, McGee D, Anderson RF, Weisend R, et al. Thorium isotopes tracing the iron cycle at the Hawaii Ocean Time-series Station ALOHA. Geochimica et Cosmochimica Acta. 2015, doi: 10.1016/j.gca.2015.07.019
  20. Heinonen JS, Kurz MD. Low-3He/4He sublithospheric mantle source for the most magnesian magmas of the Karoo large igneous province. Earth and Planetary Science Letters. 2015, doi:10.1016/j.epsl.2015.06.030
  21. Hoernle K, Rohde J, Hauff F, Garbe-Schönberg D, Homrighausen S, Werner R, et al. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nature Communications. 2015; 6:7799, doi:10.1038/ncomms8799
  22. Hu Y, Teng F-, Zhang H-, Xiao Y, Su B-. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.11.001
  23. Huang J-, Huang F, Evans L, Glasauer S. Vanadium: Global (bio)geochemistry. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.09.019
  24. Krigbaum J, Giovas CM, Kamenov GD. Strontium & lead isotope evidence for paleomobility of introduced fauna in the Caribbean. In: Society for American Archaeology 80th Annual Meeting, At San Francisco, USA.;  2015.
  25. Li C, Arndt NT, Tang Q, Ripley EM. Trace element indiscrimination diagrams. Lithos. 2015, doi:10.1016/j.lithos.2015.06.022.
  26. Li C, Zhang Z, Li W, Wang Y, Sun T, Ripley EM. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos. 2015, doi:10.1016/j.lithos.2015.01.003
  27. Liu J-, Ren Z-, Nichols AR, Song M-, Qian S-, Zhang Y, et al. Petrogenesis of Late Cenozoic Basalts from North Hainan Island: Constraints from Melt Inclusions and Their Host Olivines. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2014.12.023
  28. Ma Q, Zheng J-, Xu Y-, Griffin WL, Zhang R-. Are continental “adakites” derived from thickened or foundered lower crust? Earth and Planetary Science Letters. 2015; 419:125-33, doi:10.1016/j.epsl.2015.02.036
  29. Michael PJ, Graham DW. The Behavior and Concentration of CO2 in the Suboceanic Mantle: Inferences from Undegassed Ocean Ridge and Ocean Island Basalts. Lithos. 2015, doi:10.1016/j.lithos.2015.08.020
  30. Milidragovic D, Francis D. Ca. 2.7 Ga ferropicritic magmatism: a record of Fe-rich heterogeneities during Neoarchean global mantle melting.;  2015, doi:10.1016/j.gca.2015.09.023
  31. Paterson SR, Ducea MN. Arc Magmatic Tempos: Gathering the Evidence. Elements. 2015; 11(2):91-8, doi:10.2113/gselements.11.2.91
  32. Portnyagin M, Duggen S, Hauff F, Mironov N, Bindeman I, Thirlwall M, et al. Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems. Journal of Volcanology and Geothermal Research. 2015, doi:10.1016/j.rgg.2018.08.003
  33. Rasoazanamparany C, Widom E, Valentine GA, Smith EI, Cortés JA, Kuentz D, et al. Origin of Chemical and Isotopic Heterogeneity in a Mafic, Monogenetic Volcanic Field: A Case Study of the Lunar Crater Volcanic Field, Nevada. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.01.004
  34. Savage PS, Moynier F, Chen H, Shofner G, Siebert J, Badro J, et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochemical Perspectives Letters. 2015:53-64, doi:10.7185/geochemlet.1506
  35. Straub SM, Gómez-Tuena A, Bindeman IN, Bolge LL, Brandl PA, Espinasa-Perena R, et al. Crustal Recycling by Subduction Erosion in the central Mexican Volcanic Belt. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.06.001
  36. Stroncik NA, Niedermann S. Atmospheric Contamination of the Primary Ne and Ar Signal in Mid-Ocean Ridge Basalts and its Implications for Ocean Crust Formation. Geochimica et Cosmochimica Acta. 2015, doi:10.1016/j.gca.2015.09.016
  37. Tejada ML, Shimizu K, Suzuki K, Hanyu T, Sano T, Nakanishi M, et al. Geological Society of America Special Papers Isotopic evidence for a link between the Lyra Basin and Ontong Java Plateau. Geological Society of America Special Papers;  2015, doi:10.1130/2015.2511(14)
  38. Ukar E, Cloos M. Magmatic origin of low-T mafic blueschist and greenstone blocks from the Franciscan mélange, San Simeon, California. Lithos. 2015, doi:10.1016/j.lithos.2015.05.002
  39. Wei SS, Wiens DA, Zha Y, Plank T, Webb SC, Blackman DK, et al. Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. Nature. 2015, doi:10.1038/nature14113
  40. White W. Probing the Earth’s Deep Interior Through Geochemistry. Geochemical Perspectives. 2015:95-251, doi:10.7185/geochempersp.4.2
  41. White WM. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology. 2015; 419:10-28, doi:10.1016/j.chemgeo.2015.09.026
  42. Yang W-, Niu H-, Cheng L-, Shan Q, Li N-. Geochronology, geochemistry and geodynamic implications of the Late Mesozoic volcanic rocks in the southern Great Xing’an Mountains, NE China. Journal of Asian Earth Sciences. 2015, doi:10.1016/j.jseaes.2014.12.00
  43. Zhang L, Chen R-, Zheng Y-, Hu Z, Yang Y, Xu L. Geochemical constraints on the protoliths of eclogites and blueschists from North Qilian, northern Tibet. Chemical Geology. 2015; 421, doi:10.1016/j.chemgeo.2015.11.026
  44. Zhao Y, Xue C, Zhao X, Yang YQ, Ke J. Magmatic Cu-Ni sulfide mineralization of the Huangshannan mafic-untramafic intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences. 2015; 105(1), doi:10.1016/j.jseaes.2015.03.031
  45. van der Zwan FM, Devey CW, Augustin N, Almeev RR, Bantan R, Basaham A. Hydrothermal activity at the ultraslow- to slow-spreading Red Sea Rift traced by chlorine in basalt. Chemical Geology. 2015, doi:10.1016/j.chemgeo.2015.04.001

PetDB: 2014

  1. Acosta-Gongora P, Gleeson SA, Samson IM, Ootes L, Corriveau L. Trace Element Geochemistry of Magnetite and Its Relationship to Cu-Bi-Co-Au-Ag-U-W Mineralization in the Great Bear Magmatic Zone, NWT, Canada. Economic Geology. 2014; 109(7):1901-28, doi: 10.2113/econgeo.109.7.1901
  2. Albarède F, Albalat E, LEE C-. An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteoritics & Planetary Science. 2014; 50(4):568-77, doi:10.1111/maps.12331
  3. Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan RA, et al. The rifting to spreading transition in the Red Sea. Earth and Planetary Science Letters. 2014; 395:217-30, doi:10.1016/j.epsl.2014.03.047
  4. Baziotis I, Mposkos E, Asimow PD. Continental rift and oceanic protoliths of mafic–ultramafic rocks from the Kechros Complex, NE Rhodope (Greece): implications from petrography, major and trace-element systematics, and MELTS modeling. International Journal of Earth Sciences. 2014; 103(4):981-1003, doi:10.1007/s00531-014-1007-8
  5. Berger J, Ennih N, Liégeois J-. Extreme trace elements fractionation in Cenozoic nephelinites and phonolites from the Moroccan Anti-Atlas (Eastern Saghro). Lithos. 2014, doi:10.1016/j.lithos.2014.09.018
  6. Bodinier J-, Godard M. Treatise on GeochemistryOrogenic, Ophiolitic, and Abyssal Peridotites. Elsevier;  2014. p. 103-67, doi:10.1016/B0-08-043751-6/02004-1
  7. Byerly BL. Constraints from mantle xenoliths on the geodynamic evolution of Earth’s upper mantle. Vol PhD. Austin: The University of Texas;  2014,
  8. Cabral RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, et al. Volatile cycling of H 2 O, CO 2 , F, and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochemistry, Geophysics, Geosystems. 2014, doi:10.1002/2014GC005473
  9. Cai Y, LaGatta A, Goldstein SL, Langmuir CH, Gómez-Tuena A, Pozzo AL, et al. Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs. Chemical Geology. 2014, doi:10.1016/j.chemgeo.2014.04.002
  10. Chauvel C, Garçon M, Bureau S, Besnault A, Jahn B-, Ding Z. Constraints from loess on the Hf–Nd isotopic composition of the upper continental crust. Earth and Planetary Science Letters. 2014; 388:48-58, doi:10.1016/j.epsl.2013.11.045
  11. Chavrit D, Humler E, Grasset O. Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system. Earth and Planetary Science Letters. 2014; 387:229-39, doi:10.1016/j.epsl.2013.11.036
  12. Coogan LA. Treatise on Geochemistry The Lower Oceanic Crust. Elsevier;  2014. p. 497-541.
  13. Diaz-Bravo BA, Gomez-Tuena A, Ortega-Obregon C, Perez-Arvizu O. The origin of intraplate magmatism in the western Trans-Mexican Volcanic Belt. Geosphere. 2014; 10(2):340-73, doi:10.1130/GES00976.1
  14. Dick HJ, Zhou H. Ocean rises are products of variable mantle composition, temperature and focused melting. Nature Geoscience. 2014; 8(1):68-74, doi:10.1038/ngeo2318
  15. Diekema AR, Wesolek A, Walters CD. The NSF/NIH Effect: Surveying the Effect of Data Management Requirements on Faculty, Sponsored Programs, and Institutional Repositories. The Journal of Academic Librarianship. 2014. doi:10.1016/j.acalib.2014.04.010
  16. Escuder-Viruete J, Castillo-Carrión M, Pérez-Estaún A. Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc. Lithos. 2014, doi:10.1016/j.lithos.2014.03.013
  17. Falloon TJ, Meffre S, Crawford AJ, Hoernle K, Hauff F, Bloomer SH, et al. Cretaceous fore-arc basalts from the Tonga arc: Geochemistry and implications for the tectonic history of the SW Pacific. Tectonophysics. 2014, doi:10.1016/j.tecto.2014.05.007
  18. Gale A, Langmuir CH, Dalton CA. The Global Systematics of Ocean Ridge Basalts and their Origin. Journal of Petrology. 2014; 55(6):1051-82, doi:/10.1093/petrology/egu017
  19. Gomez-Tuena A, Diaz-Bravo B, Vazquez-Duarte A, Perez-Arvizu O, Mori L. Andesite petrogenesis by slab-derived plume pollution of a continental rift. Geological Society, London, Special Publications. 2014; 385(1):65-101, doi:10.1144/SP385.4
  20. Harvey J, Garrido C, Savov I, Agostini S, Padrón-Navarta JA, Marchesi C, et al. 11B-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chemical Geology. 2014; 376, doi:10.1016/j.chemgeo.2014.03.015
  21. Hazen RM. Data-driven abductive discovery in mineralogy. American Mineralogist. 2014; 99(11-12):2165-70, doi:10.2138/am-2014-4895
  22. Herbrich A, Hoernle K, Werner R, Hauff F, v.d. Boogard P, Garbe-Schönberg D. Cocos Plate Seamounts offshore NW Costa Rica and SW Nicaragua: Implications for large-scale distribution of Galápagos plume material in the upper mantle. Lithos. 2014, doi:10.1016/j.lithos.2014.10.014
  23. Hofmann AW. 3.3 - Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 67-101, doi:10.1016/B0-08-043751-6/02123-X
  24. Iwamori H, Nakamura H. Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Research. 2014, doi:10.1016/
  25. Jochum KP, Enzweiler J. 15.3 - Reference Materials in Geochemical and Environmental Research. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 43-70, doi:10.1016/B978-0-08-095975-7.01403-0
  26. Kakar MI, Kerr AC, Mahmood K, Collins AS, Khan M, McDonald I. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos. 2014, doi:10.1016/j.lithos.2014.05.029
  27. van Keken PE, Ballentine CJ, Hauri EH. Treatise on Geochemistry Convective Mixing in the Earth's Mantle. Elsevier;  2014. p. 509-25.
  28. Kelemen PB, Hanghøj K, Greene AR. 4.21 - One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Treatise on Geochemistry (Second Edition). Oxford: Elsevier;  2014. p. 749-806, doi:10.1016/B0-08-043751-6/03035-8
  29. Kelley KA. Inside Earth Runs Hot and Cold. Science. 2014; 344(6179):51-2, doi:10.1126/science.1252089.
  30. Kerr AC. Treatise on Geochemistry Oceanic Plateaus. Elsevier;  2014. p. 631-67, doi:10.1016/B0-08-043751-6/03033-4
  31. Koepke J. Encyclopedia of Marine Geosciences Gabbro. Harff J, Meschede M, Petersen S, Thiede J, editors. Dordrecht: Springer Netherlands;  2014.
  32. Larrea P, Gale C, Ubide T, Widom E, Lago M, Franca Z. Magmatic Evolution of Graciosa (Azores, Portugal). Journal of Petrology. 2014; 55(11):2125-54, doi:10.1093/petrology/egu052
  33. Lee C-. Treatise on Geochemistry Physics and Chemistry of Deep Continental Crust Recycling. Elsevier;  2014. p. 423-56.
  34. Li X, Mo X, Bader T, Scheltens M, Yu X, Dong G, et al. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: petrogenesis and geodynamic implications. Journal of Asian Earth Sciences. 2014, doi:10.1016/j.jseaes.2014.07.017
  35. Machida S, Orihashi Y, Magnani M, Neo N, Wilson S, Tanimizu M, et al. Regional mantle heterogeneity regulates melt production along the Réunion hotspot-influenced Central Indian Ridge, 2014, doi:10.2343/geochemj.2.0320
  36. Martin H, Moyen J-, Guitreau M, Blichert-Toft J, Le Pennec J-. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos. 2014; 198-199, doi:10.1016/j.lithos.2014.02.017
  37. McDonough WF. Treatise on Geochemistry Compositional Model for the Earth's Core. Elsevier;  2014. p. 559-77, doi:10.1016/B978-0-08-095975-7.00215-1
  38. Melekestseva IY, Tret’yakov GA, Nimis P, Yuminov AM, Maslennikov VV, Maslennikova SP, et al. Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87´ N): Evidence for phase separation and magmatic input. Marine Geology. 2014, doi:10.1016/j.margeo.2013.12.013
  39. Pernet-Fisher JF, Howarth GH, Liu Y, Barry PH, Carmody L, Valley JW, et al. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology. 2014; 167:1-17, doi: 10.1016/j.margeo.2013.12.013
  40. Rubin K. Encyclopedia of Marine Geosciences Mid-Ocean Ridge Magmatism and Volcanism. Harff J, Meschede M, Petersen S, Thiede J, editors. Dordrecht: Springer Netherlands;  2014, doi:10.1007/978-94-007-6644-0_28-3
  41. Ryan JG, Chauvel C. Treatise on Geochemistry The Subduction-Zone Filter and the Impact of Recycled Materials on the Evolution of the Mantle. Elsevier;  2014. p. 479-508, doi:10.1016/B978-0-08-095975-7.00211-4
  42. Samuel H, King SD. Mixing at mid-ocean ridges controlled by small-scale convection and plate motion. Nature Geoscience. 2014; 7(8):602-5, doi:10.1038/ngeo2208
  43. Sandeman HA, Ootes L, Cousens B, Kilian T. Petrogenesis of Gunbarrel magmatic rocks: Homogeneous continental tholeiites associated with extension and rifting of Neoproterozoic Laurentia. Precambrian Research. 2014; 252:166-79, doi:10.1016/j.precamres.2014.07.007
  44. Schenker FL, Burg J-, Kostopoulos D, Moulas E, Larionov A, von Quadt A. From Mesoproterozoic magmatism to collisional Cretaceous anatexis: Tectono-magmatic history of the Pelagonian Zone, Greece. Tectonics. 2014, doi:10.1002/2014TC003563
  45. Simon A, Yogodzinski GM, Robertson K, Smith E, Selyangin O, Kiryukhin A, et al. Evolution and Genesis of Volcanic Rocks from Mutnovsky Volcano, Kamchatka. Journal of Volcanology and Geothermal Research. 2014, doi:10.1016/j.jvolgeores.2014.09.003
  46. Søager N, Holm PM, Thirlwall MF. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina. Lithos. 2014;doi:10.1016/j.lithos.2014.11.026
  47. Staudigel H. Treatise on Geochemistry Chemical Fluxes from Hydrothermal Alteration of the Oceanic Crust. Elsevier;  2014. p. 583-606.
  48. Uno MA, Iwamori H, Nakamura H, Yokoyama TE, Ishikawa TS, Tanimizu MA. Elemental transport upon hydration of basic schists during regional metamorphism: Geochemical evidence from the Sanbagawa metamorphic belt, Japan. Geochemical Journal. 2014; 48(1):29-49, doi:10.2343/geochemj.2.0283
  49. White WM, Klein EM. Treatise on Geochemistry Composition of the Oceanic Crust. Elsevier;  2014. p. 457-96.
  50. Yang X-, Chen Y-, Hou K-, Liu S-, Liu J-. U–Pb zircon geochronology and geochemistry of Late Jurassic basalts in Maevatanana, Madagascar: Implications for the timing of separation of Madagascar from Africa. Journal of African Earth Sciences. 2014; 100:569-78, doi:10.1080/00206814.2014.977969
  51. Yu X. The Big data tool for seabed Petrogeochemistry research-PetDB and its Application in Geoscience. Advances in Earth Science. 2014; 29(2).
  52. Zou D, Liu Y, Hu Z, Gao S, Zong K, Xu R, et al. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia: Insights into the Paleo-Asian Ocean subduction-related melt/fluid–peridotite interaction. Geochimica et Cosmochimica Acta. 2014; 140:435-54, doi:10.1016/j.gca.2014.05.046

PetDB: 2013

  1. Borghini G, Rampone E, Zanetti A, Class C, Cipriani A, Hofmann AW, et al. Meter-scale Nd isotopic heterogeneity in pyroxenite-bearing Ligurian peridotites encompasses global-scale upper mantle variability. Geology. 2013, doi:10.1130/G34438.1
  2. Brandl PA, Regelous M, Beier C, Haase KM. High mantle temperatures following rifting caused by continental insulation. Nature Geoscience. 2013, doi:10.1038/ngeo1758
  3. Breton T, Nauret F, Pichat S, Moine B, Moreira M, Rose-Koga EF, et al. Geochemical heterogeneities within the Crozet hotspot. Earth and Planetary Science Letters. 2013, doi:10.1016/j.epsl.2013.06.020
  4. Cannat M, Cann J, Maclennan J. Geophysical Monograph Series Mid-Ocean RidgesSome Hard Rock Constraints on the Supply of Heat to Mid-Ocean Ridges. German CR, Lin J, Parson LM, editors. Washington, D. C.: American Geophysical Union;  2013, doi:10.1029/148GM05
  5. Carbotte SM, Marjanović M, Carton H, Mutter JC, Canales JP, Nedimović MR, et al. Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nature Geoscience. 2013, doi:10.1038/ngeo1933
  6. Chalot-Prat F, Falloon TJ, Green DH, Hibberson WO. Melting of plagioclase + spinel lherzolite at low pressures (0.5 GPa): An experimental approach to the evolution of basaltic melt during mantle refertilisation at shallow depths. Lithos. 2013, doi:10.1016/j.lithos.2013.03.012
  7. Clague DA, Dreyer BM, Paduan JB, Martin JF, Chadwick WW, Caress DW, et al. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20240
  8. Clog M, Aubaud C, Cartigny P, Dosso L. The hydrogen isotopic composition and water content of southern Pacific MORB: A reassessment of the D/H ratio of the depleted mantle reservoir. Earth and Planetary Science Letters. 2013; 381:156-65, doi:10.1016/j.epsl.2013.08.043
  9. Cottrell E, Kelley KA. Redox Heterogeneity in Mid-Ocean Ridge Basalts as a Function of Mantle Source. Science. 2013; 340(6138):1314-7, doi:10.1126/science.1233299
  10. Dreyer BM, Clague DA, Gill JB. Petrological variability of recent magmatism at axial seamount summit, juan de fuca ridge. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20239
  11. Gale A, Dalton CA, LANGMUIR CH, Su Y, Schilling J-. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1029/2012GC004334
  12. Garçon M, Chauvel C, France-Lanord C, Limonta M, Garzanti E. Removing the “heavy mineral effect” to obtain a new Pb isotopic value for the upper crust. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20219
  13. Garçon M, Chauvel C, France-Lanord C, Huyghe P, Lavé J. Continental sedimentary processes decouple Nd and Hf isotopes. Geochimica et Cosmochimica Acta. 2013, doi:10.1016/j.gca.2013.07.027
  14. Govindaraju V, Zhang C, Re C. Understanding tables in context using standard NLP toolkits. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. 2013,
  15. Heinonen JS, Luttinen AV, Riley TR, Michallik RM. Mixed pyroxenite-peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos. 2013, doi:10.1016/j.lithos.2013.05.015
  16. Husen A, Almeev RR, Holtz F, Koepke J, Sano T, Mengel K. Geothermobarometry of Basaltic Glasses from the Tamu Massif, Shatsky Rise Oceanic Plateau. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20231
  17. Jagoutz O, Schmidt MW. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth and Planetary Science Letters. 2013, doi:10.1016/j.epsl.2013.03.051
  18. Kelley KA, Kingsley R, Schilling J-. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20049
  19. Kipf A, Hauff F, Werner R, Gohl K, van den Bogaard P, Hoernle K, et al. Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism. Gondwana Research. 2013, doi:10.1016/
  20. Lange AE, Nielsen RL, Tepley FJ, Kent AJ. Diverse Sr isotope signatures preserved in mid-oceanic-ridge basalt plagioclase. Geology. 2013; 41(2):279-82, doi:10.1130/G33739.1
  21. Lange AE, Nielsen RL, Tepley FJ, Kent AJ. The petrogenesis of plagioclase-phyric basalts at mid-ocean ridges. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20207
  22. Liu B, Ma C-, Zhang J-, Xiong F-, Huang J, Jiang H-. 40Ar–39Ar age and geochemistry of subduction-related mafic dikes in northern Tibet, China: petrogenesis and tectonic implications. International Geology Review. 2013:1-17, doi:10.1080/00206814.2013.818804
  23. Liu X, Xu J, Castillo PR, Xiao W, Shi Y, Feng Z, et al. The Dupal isotopic anomaly in the southern Paleo-Asian Ocean: Nd-Pb isotope evidence from ophiolites in Northwest China. Lithos. 2013, doi:10.1016/j.lithos.2013.08.020
  24. MacLeod CJ, Johan Lissenberg C, Bibby LE. "Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology. 2013; 41(4):459-62, doi:10.1130/G33904.1
  25. Manuella FC, Brancato A, Carbone S, Gresta S. A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data. Journal of Geodynamics. 2013, doi:10.1016/j.jog.2013.02.006
  26. Manuella FC, Brancato A, Carbone S, Gresta S. Reply to “Comments on the paper “A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data” by ”. Journal of Geodynamics. 2013, doi:10.1016/j.jog.2013.09.005
  27. Mullen EK, Weis D. Sr-Nd-Hf-Pb isotope and trace element evidence for the origin of alkalic basalts in the Garibaldi Belt, northern Cascade arc. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20191
  28. Peng R, Zhai Y, Li C, Ripley EM. The Erbutu Ni-Cu Deposit in the Central Asian Orogenic Belt: A Permian Magmatic Sulfide Deposit Related to Boninitic Magmatism in An Arc Setting. Economic Geology. 2013; 108(8):1879-88, doi:10.2113/econgeo.108.8.1879
  29. Pisias NG, Murray RW, Scudder RP. Multivariate statistical analysis and partitioning of sedimentary geochemical data sets: General principles and specific MATLAB scripts. Geochemistry, Geophysics, Geosystems. 2013; 14(10), doi:10.1002/ggge.20247
  30. Prelević D, Jacob DE, Foley SF. Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. Earth and Planetary Science Letters. 2013; 362:187-97, doi:10.1016/j.epsl.2012.11.035
  31. Ray JS, Pande K, Bhutani R, Shukla AD, Rai VK, Kumar A, et al. Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma. Contributions to Mineralogy and Petrology. 2013, doi:10.1007/s00410-013-0945-7
  32. Ray D, Misra S, Banerjee R. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean. Journal of Asian Earth Sciences. 2013, doi:10.1016/j.jseaes.2013.03.008
  33. Ray D, Misra S, Widdowson M, Langmuir CH. A common parentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? A Geochemical and isotopic approach. Journal of Asian Earth Sciences. 2013, doi:10.1016/j.jseaes.2013.12.015
  34. Risse A, Trumbull RB, Kay SM, Coira B, Romer RL. Multi-stage Evolution of Late Neogene Mantle-derived Magmas from the Central Andes Back-arc in the Southern Puna Plateau of Argentina. Journal of Petrology. 2013, doi:10.1093/petrology/egt038
  35. Rocha-Júnior ER, Marques LS, Babinski M, Nardy AJ, Figueiredo AM, Machado FB. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from Northern Paraná Continental Flood Basalts (Brazil). Journal of South American Earth Sciences. 2013, doi:10.1016/j.jsames.2013.04.004
  36. Rohde J, Hoernle K, Hauff F, Werner R, O'Connor J, Class C, et al. 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology. 2013; 41(3):335-8, doi:10.1130/G33790.1
  37. Sakuyama T, Tian W, Kimura J-, Fukao Y, Hirahara Y, Takahashi T, et al. Recycling and melting of dehydrated oceanic crust from the stagnant slab and contribution from the hydrated mantle transition zone in off-arc mantle: Constraints from Cenozoic alkaline basalts in eastern China. Chemical Geology. 2013, doi:10.1016/j.chemgeo.2013.09.012
  38. Sakuyama T, Tian W, Kimura J-, Fukao Y, Hirahara Y, Takahashi T, et al. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chemical Geology. 2013; 359:32-48, doi:10.1016/j.chemgeo.2013.09.012
  39. Sandeman HA, Heaman LM, LeCheminant AN. The Paleoproterozoic Kaminak dykes, Hearne craton, western Churchill Province, Nunavut, Canada: Preliminary constraints on their age and petrogenesis. Precambrian Research. 2013; 232:119-39, doi:10.1016/j.precamres.2012.06.002
  40. Silva IG, Weis D, Scoates JS. Isotopic Systematics of the Early Mauna Kea Shield Phase and Insight Into the Deep Mantle Beneath the Pacific Ocean. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20047
  41. Smith D. Olivine thermometry and source constraints for mantle fragments in the Navajo Volcanic Field, Colorado Plateau, southwest United States: Implications for the mantle wedge. Global Biogeochemical Cycles. 2013, doi:10.1002/ggge.20065
  42. Søager N, Holm PM. Melt-peridotite reactions in upwelling eclogite bodies: Constraints from EM1-type alkaline basalts in Payenia, Argentina. Chemical Geology. 2013, doi:10.1016/j.chemgeo.2013.10.024
  43. Straub SM, Gomez-Tuena A, Zellmer GF, Espinasa-Perena R, Stuart FM, Cai Y, et al. The Processes of Melt Differentiation in Arc Volcanic Rocks: Insights from OIB-type Arc Magmas in the Central Mexican Volcanic Belt. Journal of Petrology. 2013; 54(4):665-701, doi:10.1093/petrology/egs081
  44. Sun T, Qian Z-, Li C, Xia M-, Yang S-. Petrogenesis and economic potential of the Erhongwa mafic–ultramafic intrusion in the Central Asian Orogenic Belt, NW China: Constraints from olivine chemistry, U-Pb age and Hf isotopes of zircons, and whole–rock Sr–Nd–Pb isotopes. Lithos. 2013, doi:10.1016/j.lithos.2013.10.004
  45. Sun T, Qian Z-, Deng Y-, Li C, Song X-, Tang Q. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the Origin of the Huangshandong Magmatic Ni-Cu Sulfide Deposit in the Central Asian Orogenic Belt, Northwestern China. Economic Geology. 2013; 108(8):1849-64, doi:10.2113/econgeo.108.8.1849
  46. Tang G-, Wang Q, Wyman DA, Sun M, Zhao Z-, Jiang Z-. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions. Journal of Asian Earth Sciences. 2013, doi:10.1016/j.jseaes.2013.03.022
  47. Tejada ML, Suzuki K, Hanyu T, Mahoney JJ, Ishikawa A, Tatsumi Y, et al. Cryptic lower crustal signature in the source of the Ontong Java Plateau revealed by Os and Hf isotopes. Earth and Planetary Science Letters. 2013; 377-378:84-96, doi:10.1016/j.epsl.2013.07.022
  48. Teng F-, Dauphas N, Huang S, Marty B. Iron isotopic systematics of oceanic basalts. Geochimica et Cosmochimica Acta. 2013; 107:12-26, doi:10.1016/j.gca.2012.12.027
  49. Ukar E, Cloos M. Actinolitic rinds on low-T mafic blueschist blocks in the Franciscan shale-matrix mélange near San Simeon: Implications for metasomatism and tectonic history. Earth and Planetary Science Letters. 2013, doi:10.1016/j.epsl.2013.06.038
  50. Valencia VA, Righter K, Rosas-Elguera J, López-Martínez M, Grove M. The age and composition of the pre-Cenozoic basement of the Jalisco Block: implications for and relation to the Guerrero composite terrane. Contributions to Mineralogy and Petrology. 2013; 166(3):801-24, doi:10.1007/s00410-013-0908-z
  51. Van Kranendonk MJ, Kirkland CL. Orogenic climax of Earth: The 1.2-1.1 Ga Grenvillian superevent. Geology. 2013, doi:10.1130/G34243.1
  52. Velikoslavinskii SD, Glebovitskii VA, Krylov DP. Separation between sedimentary and magmatic silicate rocks by discriminant analysis of major element contents. Doklady Earth Sciences. 2013; 453(1):1150-3, doi:10.1134/S1028334X13110238
  53. Wilson SC, Murton BJ, Taylor RN. Mantle composition controls the development of an Oceanic Core Complex. Geochemistry, Geophysics, Geosystems. 2013, doi:10.1002/ggge.20046
  54. Xia M-, Jiang C-, Li C, Xia Z-. Characteristics of a Newly Discovered Ni-Cu Sulfide Deposit Hosted in the Poyi Ultramafic Intrusion, Tarim Craton, NW China. Economic Geology. 2013; 108(8):1865-78, doi:10.2113/econgeo.108.8.1865
  55. Yachi Y, Kitagawa H, Kunihiro T, Nakamura E. Software Dedicated for the Curation of Geochemical Data Sets in Analytical Laboratories. Geostandards and Geoanalytical Research. 2013, doi:10.1111/j.1751-908X.2013.00205.x
  56. Zhang G-, Chen L-, Li S-. Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge. Earth and Planetary Science Letters. 2013; 383:153-63, doi:10.1016/j.epsl.2013.09.045
  57. Zhang Z-, Li W-, Gao Y-, Li C, Ripley EM, Kamo S. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions. Mineralium Deposita. 2013, doi:10.1007/s00126-013-0488-x

PetDB: 2012

  1. Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Bejina F, Abily B, et al. A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-hosted Inclusions. Journal of Petrology. 2012, doi:/10.1093/petrology/egs054
  2. Brant C, Coogan LA, Gillis KM, Seyfried WE, Pester NJ, Spence J. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochimica et Cosmochimica Acta. 2012, doi:10.1016/j.gca.2012.08.025
  3. Brophy JG, Pu X. Rare earth element–SiO2 systematics of mid-ocean ridge plagiogranites and host gabbros from the Fournier oceanic fragment, New Brunswick, Canada: a field evaluation of some model predictions. Contributions to Mineralogy and Petrology. 2012; 164(2):191-204, doi:10.1007/s00410-012-0732-x
  4. Byerly BL, Lassiter JC. Evidence from mantle xenoliths for lithosphere removal beneath the central Rio Grande Rift. Earth and Planetary Science Letters. 2012; 355-356:82-93, doi:10.1016/j.epsl.2012.08.034
  5. Chauvel C, Maury RC, Blais S, Lewin E, Guillou H, Guille G, et al. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004123
  6. Chavrit D, Humler E, Morizet Y, Laporte D. Influence of magma ascent rate on carbon dioxide degassing at oceanic ridges: Message in a bubble. Earth and Planetary Science Letters. 2012; 357-358:376-85, doi:10.1016/j.epsl.2012.09.042
  7. Chen Z-, Zhou H-, Liu Y, Yang Q-, Li J-, Dick HJ. Influence of igneous processes and serpentinization on geochemistry of the Logatchev Massif harzburgites (14°45N, Mid-Atlantic Ridge), and comparison with global abyssal peridotites. International Geology Review. 2012:1-16, doi:10.1080/00206814.2012.704674
  8. Choi H-, Choi SH, Lee D-, Kang HC. Geochemical Evolution of Basaltic Volcanism within the Tertiary Basins of Southeastern Korea and the Opening of the East Sea (Sea of Japan). Journal of Volcanology and Geothermal Research. 2012, doi:/10.1016/j.jvolgeores.2012.09.007
  9. Cluzel D, Jourdan F, Meffre S, Maurizot P, Lesimple S. The metamorphic sole of New Caledonia ophiolite: 40 Ar/ 39 Ar, U-Pb, and geochemical evidence for subduction inception at a spreading ridge. Tectonics. 2012; 31(3), doi:10.1029/2011TC003085
  10. Collier ML. Spatial-Statistical Properties of Geochemical Variability as Constraints on Magma Transport and Evolution Processes at Ocean Ridges. New York, NY: Columbia University;  2012, doi:10.7916/D82V2P43
  11. Coogan LA, Dosso S. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth and Planetary Science Letters. 2012; 323-324:92-101, doi:10.1016/j.epsl.2012.01.017
  12. Dale CW, Macpherson CG, Pearson GD, Hammond SJ, Arculus RJ. Inter-element fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source. Geochimica et Cosmochimica Acta. 2012; 89:202-25, doi:10.1016/j.gca.2012.03.025
  13. Deschamps F, Godard M, Guillot S, Chauvel C, Andreani M, Hattori K, et al. Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology. 2012; 312-313:93-117, doi:10.1016/j.chemgeo.2012.04.009
  14. Gao Y, Vils F, Cooper KM, Banerjee N, Harris M, Hoefs J, et al. Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004207
  15. Guarnieri L, Nakamura E, Piccardo GB, Sakaguchi C, Shimizu N, Vannucci R, et al. Petrology, Trace Element and Sr, Nd, Hf Isotope Geochemistry of the North Lanzo Peridotite Massif (Western Alps, Italy). Journal of Petrology. 2012, doi:10.1093/petrology/egs049
  16. Haase KM, Beier C, Fretzdorff S, Smellie JL, Garbe-Schönberg D. Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation. Contributions to Mineralogy and Petrology. 2012, doi:10.1007/s00410-012-0719-7
  17. Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004370
  18. Hollocher K, Robinson P, Walsh E, Roberts D. Geochemistry of amphibolite-facies volcanics and gabbros of the Storen Nappe in extensions west and southwest of Trondheim, western gneiss region, Norway: A key to correlations and paleotectonic settings. American Journal of Science. 2012; 312(4):357-416, doi:10.2475/04.2012.01
  19. Huang J-, Gréau Y, Griffin WL, O'Reilly SY, Pearson NJ. Multi-stage origin of Roberts Victor eclogites: Progressive metasomatism and its isotopic effects. Lithos. 2012, doi:10.1016/j.lithos.2012.03.002
  20. Iwamori H, Nakamura H. East-west mantle geochemical hemispheres constrained from Independent Component Analysis of basalt isotopic compositions. Geochemical Journal. 2012; 46, doi:10.2343/geochemj.2.0224
  21. Joy KH, Zolensky ME, Nagashima K, Huss GR, Ross DK, McKay DS, et al. Direct Detection of Projectile Relics from the End of the Lunar Basin-Forming Epoch. Science. 2012; 336(6087):1426-9, doi:10.1126/science.1219633
  22. Kimura J-, Sano S. Reactive Melt Flow as the Origin of Residual Mantle Lithologies and Basalt Chemistries in Mid-Ocean Ridges: Implications from the Red Hills Peridotite, New Zealand. Journal of Petrology. 2012; 53(8):1637-71, doi:10.1093/petrology/egs028
  23. Kirchner TM, Gillis KM. Mineralogical and strontium isotopic record of hydrothermal processes in the lower ocean crust at and near the East Pacific Rise. Contributions to Mineralogy and Petrology. 2012; 164(1):123-41,doi:10.1007/s00410-012-0729-5
  24. Konter JG, Jackson MG. Large volumes of rejuvenated volcanism in Samoa: Evidence supporting a tectonic influence on late-stage volcanism. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2011GC003974
  25. Kushendratno, Pallister JS, Kristianto, Bina FR, McCausland W, Carn S, et al. Recent explosive eruptions and volcano hazards at Soputan volcano—a basalt stratovolcano in north Sulawesi, Indonesia. Bulletin of Volcanology. 2012; 74(7):1581-609, doi:10.1007/s00445-012-0620-2
  26. Lange AE, Nielsen RL, Tepley FJ, Kent AJ. Diverse Sr isotope signatures preserved in mid-oceanic-ridge basalt plagioclase. Geology. 2012, doi:10.1130/G33739.1
  27. Laubier M, Gale A, Langmuir CH. Melting and Crustal Processes at the FAMOUS Segment (Mid-Atlantic Ridge): New Insights from Olivine-hosted Melt Inclusions from Multiple Samples. Journal of Petrology. 2012; 53(4):665-98, doi:10.1093/petrology/egr075
  28. Ledneva GV, Bazylev BA, Lebedev VV, Kononkova NN, Ishiwatari A. U-Pb zircon age of gabbroids of the Ust’-Belaya mafic-ultramafic massif (Chukotka) and its interpretation. Geochemistry International. 2012; 50(1):44-53, doi:10.1134/S0016702912010077
  29. Lissenberg JC, MacLeod CJ, Howard KA, Godard M. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth and Planetary Science Letters. 2012, doi:10.1016/j.epsl.2012.11.012
  30. Lytle ML, Kelley KA, Hauri EH, Gill JB, Papia D, Arculus RJ. Tracing mantle sources and Samoan influence in the northwestern Lau back-arc basin. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004233
  31. Manduca CA, Kastens KA. Geological Society of America Special PapersEarth and Mind II: A Synthesis of Research on Thinking and Learning in the GeosciencesGeoscience and geoscientists: Uniquely equipped to study Earth. Vol 486. Geological Society of America;  2012, doi:10.1144/0016-76492011-015
  32. Menke W. Geophysical Data Analysis: Discrete Inverse Theory Factor Analysis. Elsevier;  2012.
  33. Merle R, Kaczmarek M-, Tronche E, Girardeau J. Occurrence of inherited supra-subduction zone mantle in the oceanic lithosphere as inferred from mantle xenoliths from Dragon Seamount (southern Tore-Madeira Rise). Journal of the Geological Society. 2012; 169(3):251-67, doi:10.1144/0016-76492011-015
  34. Perfit M, Wanless DV, Ridley IW, Klein E, Smith M, Goss A, et al. Lava Geochemistry as a Probe into Crustal Formation at the East Pacific Rise. Oceanography. 2012; 25(1):89-93, doi: 10.5670/oceanog.2012.06
  35. Pesce KA. Petrology and geochemistry of pyroxenites in the Lanzo ultramafic massif, Northwestern Italy. Cambridge, MA: Massachusetts Institute of Technology;  2012,
  36. Picazo S, Cannat M, Delacour A, Escartín J, Rouméjon S, Silantyev S. Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°–15°N: The role of magmatic injections and hydrothermal alteration. Geochemistry Geophysics Geosystems. 2012; 13,doi:10.1029/2012GC004121
  37. Porder S, Ramachandran S. The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant and Soil. 2012, doi:10.1007/s11104-012-1490-2
  38. Radhakrishna T, Joseph M. Geochemistry and paleomagnetism of Late Cretaceous mafic dikes in Kerala, southwest coast of India in relation to large igneous provinces and mantle plumes in the Indian Ocean region. Geological Society of America Bulletin. 2012; 124(1-2):240-55, doi:10.1130/B30288.1
  39. Ray JS, Mahoney JJ, Duncan RA, Ray J, Wessel P, Naar DF. Chronology and Geochemistry of Lavas from the Nazca Ridge and Easter Seamount Chain: an ~30 Myr Hotspot Record. Journal of Petrology. 2012; 53(7):1417-48, doi:10.1093/petrology/egs021
  40. Robles-Cruz SE, Escayola M, Jackson S, Galí S, Pervov V, Watangua M, et al. U–Pb SHRIMP geochronology of zircon from the Catoca kimberlite, Angola: Implications for diamond exploration. Chemical Geology. 2012; 310-311:137-47, doi:10.1016/j.chemgeo.2012.04.001
  41. Sakyi PA, Tanaka R, Kobayashi K, Nakamura E. Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas. Geochimica et Cosmochimica Acta. 2012; 95:169-95, doi:10.1016/j.gca.2012.07.025
  42. Sandeman HA, Heaman LM, LeCheminant AN. The Paleoproterozoic Kaminak dykes, Hearne craton, western Churchill Province, Nunavut, Canada: Preliminary constraints on their age and petrogenesis. Precambrian Research. 2012, doi:10.1016/j.precamres.2012.06.002
  43. Sano T, Shimizu K, Ishikawa A, Senda R, Chang Q, Kimura J-, et al. Variety and origin of magmas on Shatsky Rise, northwest Pacific Ocean. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004235
  44. Schorn A, Neubauer F, Genser J, Bernroider M. The Haselgebirge evaporitic mélange in central Northern Calcareous Alps (Austria): Part of the Permian to Lower Triassic rift of the Meliata ocean? Tectonophysics. 2012, doi:10.1016/j.tecto.2012.10.016
  45. Shaw AM, Hauri EH, Behn MD, Hilton DR, Macpherson CG, Sinton JM. Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nature Geoscience. 2012; 5(3):224-8, doi:10.1038/ngeo1406
  46. Speckbacher R, Behrmann JH, Nagel TJ, Stipp M, Mahlke J. Fluid flow and metasomatic fault weakening in the Moresby Seamount detachment, Woodlark Basin, offshore Papua New Guinea. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004407
  47. Starkey NA, Fitton GJ, Stuart FM, Larsen LM. Melt inclusions in olivines from early Iceland plume picrites support high 3He/4He in both enriched and depleted mantle. Chemical Geology. 2012; 306-307:54-62, doi:10.1016/j.chemgeo.2012.02.022
  48. Stracke A. Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology. 2012, doi:10.1016/j.chemgeo.2012.08.007
  49. Straub SM, Zellmer GF. Volcanic arcs as archives of plate tectonic change. Gondwana Research. 2012; 21(2-3):495-516, doi:10.1016/
  50. Tang M, Wang X-, Xu X-, Zhu C, Cheng T, Yu Y. Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf–Nd isotopic decoupling. Gondwana Research. 2012; 21(1):266-80, doi:10.1016/
  51. Thorarinsson SB, Holm PM, Duprat HI, Tegner C. Petrology and Sr–Nd–Pb isotope geochemistry of Late Cretaceous continental rift ignimbrites, Kap Washington peninsula, North Greenland. Journal of Volcanology and Geothermal Research. 2012, doi:10.1016/j.jvolgeores.2012.01.011
  52. Till CB, Grove TL, Krawczynski MJ. A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields. Journal of Geophysical Research. 2012; 117(B6), doi:10.1029/2011JB009044
  53. Timm C, de Ronde CE, Leybourne MI, Layton-Matthews D, Graham IJ. Sources of Chalcophile and Siderophile Elements in Kermadec Arc Lavas. Economic Geology. 2012; 107(8):1527-38, doi:10.2113/econgeo.107.8.1527
  54. Tirone M, SEN G, Morgan JP. Petrological geodynamic modeling of mid-ocean ridges. Physics of the Earth and Planetary Interiors. 2012; 190-191:51-70, doi:10.1016/j.pepi.2011.10.008
  55. Todd E, Gill JB, Pearce JA. A variably enriched mantle wedge and contrasting melt types during arc stages following subduction initiation in Fiji and Tonga, southwest Pacific. Earth and Planetary Science Letters. 2012; 335-336:180-94, doi:10.1016/j.epsl.2012.05.006
  56. Ulrich M, Hémond C, Nonnotte P, Jochum KP. OIB/seamount recycling as a possible process for E-MORB genesis. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004078
  57. Vigneresse J-. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation. Lithos. 2012, doi:10.1016/j.lithos.2012.03.014
  58. Vigouroux N, Wallace PJ, Williams-Jones G, Kelley K, Kent AJ, Williams-Jones AE. The sources of volatile and fluid-mobile elements in the Sunda arc: A melt inclusion study from Kawah Ijen and Tambora volcanoes, Indonesia. Geochemistry Geophysics Geosystems. 2012; 13, doi:10.1029/2012GC004192
  59. Waight TE, Baker JA. Depleted Basaltic Lavas from the Proto-Iceland Plume, Central East Greenland. Journal of Petrology. 2012; 53(8):1569-96, doi:10.1093/petrology/egs026
  60. Wanless VD, Shaw AM. Lower crustal crystallization and melt evolution at mid-ocean ridges. Nature Geoscience. 2012; 5(9):651-5, doi:10.1038/ngeo1552
  61. Warren JM, Shirey SB. Lead and osmium isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides. Earth and Planetary Science Letters. 2012, doi:10.1016/j.epsl.2012.09.055
  62. Xu Z, Zhao Z-, Zheng Y-. Slab–mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos. 2012; 146-147:202-17, doi:10.1016/j.lithos.2012.05.019
  63. Zhang G-, Zong C-, Yin X-, Li H. Geochemical constraints on a mixed pyroxenite-peridotite source for East Pacific Rise basalts. Chemical Geology. 2012, doi:10.1016/j.chemgeo.2012.08.033
  64. Zhang Z, Kang J, Kusky T, Santosh M, Huang H, Zhang D, et al. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup. Precambrian Research. 2012; 220-221:158-76, doi:10.1016/j.chemgeo.2012.08.033
  65. Zhang GL, Smith-Duque C, Tang S, Li H, Zarikian C, D'Hondt S, et al. Geochemistry of basalts from IODP site U1365: Implications for magmatism and mantle source signatures of the mid-Cretaceous Osbourn Trough. Lithos. 2012; 144-145:73-87, doi:10.1016/j.lithos.2012.04.014

PetDB: 2011

  1. Aulinas M, Gasperini D, Gimeno D, Macera P, Fernandez-Turiel JL, Cimarelli C. Coexistence of calc-alkaline and ultrapotassic alkaline magmas at Mounts Cimini: evidence for transition from the Tuscan to the Roman Magmatic Provinces (Central Italy). Geologica Acta. 2011; 9:103-25, doi:10.1344/105.000001642
  2. Booden MA, Smith IE, Black PM, Mauk JL. Geochemistry of the Early Miocene volcanic succession of Northland, New Zealand, and implications for the evolution of subduction in the Southwest Pacific. Journal of Volcanology and Geothermal Research. 2011; 199(1-2):25-37, doi:10.1016/j.jvolgeores.2010.10.006
  3. Busigny V, Cartigny P, Philippot P. Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochimica et Cosmochimica Acta. 2011; 75(23):7502-21, doi:10.1016/j.gca.2011.09.049
  4. Chauvet F, Lapierre H, Maury RC, Bosch D, Basile C, Cotten J, et al. Triassic alkaline magmatism of the Hawasina Nappes: Post-breakup melting of the Oman lithospheric mantle modified by the Permian Neotethyan Plume. Lithos. 2011; 122(1-2):122-36, doi:10.1016/j.lithos.2010.12.006
  5. Class C, le Roex A. South Atlantic DUPAL anomaly — Dynamic and compositional evidence against a recent shallow origin. Earth and Planetary Science Letters. 2011; 305(1-2):92-102, doi:10.1016/j.epsl.2011.02.036
  6. Cottrell E, Kelley KA. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters. 2011; 305(3-4):270-82, doi:10.1016/j.epsl.2011.03.014
  7. Day JM, Hilton DR. Origin of 3He/4He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth and Planetary Science Letters. 2011; 305(1-2):226-34, doi:10.1016/j.epsl.2011.03.006
  8. De Hoog JC, Janák M, Vrabec M, Hattori KH. Ultrahigh Pressure MetamorphismUltramafic Cumulates of Oceanic Affinity in an Intracontinental Subduction Zone. Elsevier;  2011, doi:10.1016/B978-0-12-385144-4.00012-6
  9. Escuder-Viruete J, Friedman R, Castillo-Carrión M, Jabites J, Pérez-Estaún A. Origin and significance of the ophiolitic high-P mélanges in the northern Caribbean convergent margin: Insights from the geochemistry and large-scale structure of the Río San Juan metamorphic complex. Lithos. 2011; 127(3-4):483-504,doi:10.1016/j.lithos.2011.09.015
  10. Filiberto J, Dasgupta R. Fe2+–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth and Planetary Science Letters. 2011; 304(3-4):527-37, doi:10.1016/j.epsl.2011.02.029
  11. Frey FA, Pringle M, Meleney P, Huang S, Piotrowski A. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses. Earth and Planetary Science Letters. 2011; 303(3-4):215-24, doi:10.1016/j.epsl.2010.12.051
  12. Geldmacher J, Hoernle K, Hanan BB, Blichert-Toft J, Hauff F, Gill JB, et al. Hafnium isotopic variations in East Atlantic intraplate volcanism. Contributions to Mineralogy and Petrology. 2011; 162(1):21-36, doi:10.1007/s00410-010-0580-5
  13. Gómez-Tuena A, Mori L, Goldstein SL, Pérez-Arvizu O. Magmatic diversity of western Mexico as a function of metamorphic transformations in the subducted oceanic plate. Geochimica et Cosmochimica Acta. 2011; 75(1):213-41, doi:10.1016/j.gca.2010.09.029
  14. Haase KM, Beier C, Fretzdorff S, Leat PT, Livermore RA, Barry TL, et al. Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage. Chemical Geology. 2011; 280(1-2):115-25, doi:10.1016/j.chemgeo.2010.11.002
  15. Hamelin C, Dosso L, Hanan BB, Moreira M, Kositsky AP, Thomas MY. Geochemical portray of the Pacific Ridge: New isotopic data and statistical techniques. Earth and Planetary Science Letters. 2011; 302(1-2):154-62, doi:10.1016/j.epsl.2010.12.007
  16. Head EM, Shaw AM, Wallace PJ, Sims KW, Carn SA. Insight into volatile behavior at Nyamuragira volcano (D.R. Congo, Africa) through olivine-hosted melt inclusions. Geochemistry Geophysics Geosystems. 2011; 12, doi:10.1029/2011GC003699
  17. Hein A, Kilikoglou V. Ceradat-prototype of a web-based relational database for Archeaological ceramics. Archaeometry. 2011; 54(2):230-43, doi:10.1111/j.1475-4754.2011.00618.x
  18. Helo C, Longpré M-, Shimizu N, Clague DA, Stix J. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geoscience. 2011; 4(4):260-3, doi:10.1038/ngeo1104
  19. Herzberg C. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology. 2011; 52(1):113-46, doi:10.1093/petrology/egq075
  20. Hoernle K, Hauff F, Werner R, van den Bogaard P, Gibbons AD, Conrad S, et al. Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nature Geoscience. 2011; 4(12):883-7, doi:10.1038/ngeo1331
  21. Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters. 2011; 306(3-4):229-40, doi:10.1016/j.epsl.2011.04.006
  22. Kamenov GD, Perfit MR, Lewis JF, Goss AR, Arévalo R, Shuster RD. Ancient lithospheric source for Quaternary lavas in Hispaniola. Nature Geoscience. 2011; 4(8):554-7, doi:10.1038/ngeo1203
  23. Marques AF, Scott SD, Guillong M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system. Earth and Planetary Science Letters. 2011; 310(1-2):145-60, doi:10.1016/j.epsl.2011.07.021
  24. Martini M, Mori L, Solari L, Centeno-García E. Sandstone Provenance of the Arperos Basin (Sierra de Guanajuato, Central Mexico): Late Jurassic–Early Cretaceous Back-Arc Spreading as the Foundation of the Guerrero Terrane. The Journal of Geology. 2011; 119(6):597-617, doi:10.1086/661989
  25. Moore DE, Rymer MJ. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD). Journal of Structural Geology. 2011, doi:10.1016/j.jsg.2011.11.014
  26. Mottl MJ, Seewald JS, Wheat GC, Tivey MK, Michael PJ, Proskurowski G, et al. Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta. 2011; 75(4):1013-38, doi:10.1016/j.gca.2010.12.008
  27. Nauret F, Snow JE, Hellebrand E, Weis D. Geochemical Composition of K-rich Lavas from the Lena Trough (Arctic Ocean). Journal of Petrology. 2011; 52(6):1185-206, doi:10.1093/petrology/egr024
  28. Nebel O, Mezger K, van Westrenen W. Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution. Earth and Planetary Science Letters. 2011; 305(3-4):309-16, doi:10.1016/j.epsl.2011.03.009
  29. Peyve AA. Seamounts in the east of South Atlantic: Origin and correlation with Mesozoic-Cenozoic magmatic structures of West Africa. Geotectonics. 2011; 45(3):195-209, doi:10.1134/S0016852111030058
  30. Pilet S, Baker MB, Muntener O, Stolper EM. Monte Carlo Simulations of Metasomatic Enrichment in the Lithosphere and Implications for the Source of Alkaline Basalts. Journal of Petrology. 2011; 52(7-8):1415-42, doi:10.1093/petrology/egr007
  31. Presnall DC, Gudfinnsson GH. Oceanic Volcanism from the Low-velocity Zone - without Mantle Plumes. Journal of Petrology. 2011; 52(7-8):1533-46, doi:/10.1093/petrology/egq093
  32. Putirka K, Ryerson FJ, Perfit M, Ridley WI. Mineralogy and Composition of the Oceanic Mantle. Journal of Petrology. 2011; 52(2):279-313, doi:10.1093/petrology/egq080
  33. Rauch JN. Global distributions of Fe, Al, Cu, and Zn contained in Earth's derma layers. Journal of Geochemical Exploration. 2011; 110(2):193-201, doi:10.1016/j.gexplo.2011.05.008
  34. Salters VJ, Mallick S, Hart SR, Langmuir CE, Stracke A. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochemistry Geophysics Geosystems. 2011; 12(8), doi:10.1029/2011GC003617
  35. Sano T, Sakuyama T, Ingle S, Rodriguez S, Yamasaki T. Petrological relationships among lavas, dikes, and gabbros from Integrated Ocean Drilling Program Hole 1256D: Insight into the magma plumbing system beneath the East Pacific Rise. Geochemistry Geophysics Geosystems. 2011; 12(6), doi:10.1029/2011GC003548
  36. Schmitt AK, Perfit MR, Rubin KH, Stockli DF, Smith MC, Cotsonika LA, et al. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth and Planetary Science Letters. 2011; 302(3-4):349-5, doi:10.1016/j.epsl.2010.12.022
  37. Schuth S, König S, Münker C. Subduction zone dynamics in the SW Pacific plate boundary region constrained from high-precision Pb isotope data. Earth and Planetary Science Letters. 2011; 311(3-4):328-38, doi:10.1016/j.epsl.2011.09.006
  38. Sen G. Deccan Traps Flood Basalt Province: An Evaluation of the Thermochemical Plume Model. In: Ray J, Sen G, Ghosh B, editors. Topics in Igneous Petrology. Dordrecht: Springer Netherlands;  2011. p. 29-53, doi:10.1007/978-90-481-9600-5_2
  39. Shervais JW, Choi SH, Sharp WD, Ross J, Zoglman-Schuman M, Mukasa SB. Geological Society of America Special Papers Mélanges: Processes of Formation and Societal Significance Serpentinite matrix mélange: Implications of mixed provenance for mélange formation. Vol 480. Geological Society of America;  2011, doi: 10.1130/2011.2480(01)
  40. Shimoda G, Ishizuka O, Yamashita K, Yoshitake M, Ogasawara M, Yuasa M. Tectonic influence on chemical composition of ocean island basalts in the West and South Pacific: Implication for a deep mantle origin. Geochemistry Geophysics Geosystems. 2011; 12(7), doi:10.1029/2011GC003531
  41. Solari LA, Gomex-Tuena A, Ortega-Gutierrez F, Ortega-Obregon C. The Chuacus Metamorphic Complex, central Guatemala: geochronological and geochemical constraints on its Paleozoic-Mesozoic evolution. Geologica Acta. 2011; 9(3-4):329-50, doi:10.1344/105.000001695
  42. Stroncik NA, Devey CW. Recycled gabbro signature in hotspot magmas unveiled by plume–ridge interactions. Nature Geoscience. 2011; 4(6):393-7, doi:10.1038/ngeo1121
  43. Thorarinsson SB, Holm PM, Duprat H, Tegner C. Silicic magmatism associated with Late Cretaceous rifting in the Arctic Basin—petrogenesis of the Kap Kane sequence, the Kap Washington Group volcanics, North Greenland. Lithos. 2011; 125(1-2):65-85, doi:10.1016/j.lithos.2011.01.013
  44. Van den Bleeken G, Müntener O, Ulmer P. Melt variability in percolated peridotite: an experimental study applied to reactive migration of tholeiitic basalt in the upper mantle. Contributions to Mineralogy and Petrology. 2011; 161(6):921-45, doi:10.1007/s00410-010-0572-5
  45. Vervoort JD, Plank T, Prytulak J. The Hf–Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta. 2011; 75(20):5903-26, doi:10.1016/j.gca.2011.07.046
  46. Waters CL, Sims KW, Perfit MR, Blichert-Toft J, Blusztajn J. Perspective on the Genesis of E-MORB from Chemical and Isotopic Heterogeneity at 9-10 N East Pacific Rise. Journal of Petrology. 2011; 52(3):565-602, doi:10.1093/petrology/egq091
  47. Yamagishi Y, Suzuki K, Tamura H, Yanaka H, Tsuboi S. Visualization of geochemical data for rocks and sediments in Google Earth: Development of a data converter application for geochemical and isotopic data sets in database systems. Geochemistry, Geophysics, Geosystems. 2011; 12(3), doi:10.1029/2010GC003490
  48. Yan Q, Shi X. Geological comparative studies of Japan arc system and Kyushu-Palau arc. Acta Oceanologica Sinica. 2011; 30(4):107-21, doi:10.1007/s13131-011-0134-3

PetDB: 2010

  1. Arevalo R, McDonough WF. Chemical variations and regional diversity observed in MORB. Chemical Geology. 2010; 271(1-2):70-85, doi:10.1016/j.chemgeo.2009.12.013
  2. Armienti P, Gasperini D. Isotopic evidence for chaotic imprint in upper mantle heterogeneity. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2009GC002798
  3. Barker AK, Coogan LA, Gillis KM, Hayman NW, Weis D. Direct observation of a fossil high-temperature, fault-hosted, hydrothermal upflow zone in crust formed at the East Pacific Rise. Geology. 2010; 38:379-82, doi:10.1130/G30542.1
  4. Berger J, Féménias O, Ohnenstetter D, Bruguier O, Plissart G, Mercier J-, et al. New occurrence of UHP eclogites in Limousin (French Massif Central): Age, tectonic setting and fluid–rock interactions. Lithos. 2010; 118:365-82, doi:10.1016/j.lithos.2010.05.013
  5. Blatter DL, Hammersley L. Impact of the Orozco Fracture Zone on the central Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research. 2010; 197(1-4):67-84, doi:10.1016/j.jvolgeores.2009.08.002
  6. Chalot-prat F, Falloon TJ, Green DH, Hibberson WO. An Experimental Study of Liquid Compositions in Equilibrium with Plagioclase + Spinel Lherzolite at Low Pressures (0.75 GPa). Journal of Petrology. 2010; 51:2349-76, doi:/10.1093/petrology/egq060
  7. Clowes R, Wyman D, Kerrich R. Mantle plume – volcanic arc interaction: consequences for magmatism, metallogeny, and cratonization in the Abitibi and Wawa subprovinces, Canada. Canadian Journal of Earth Sciences. 2010; 47(5):565-89, doi:10.1139/E09-049
  8. Collier ML, Kelemen PB. The Case for Reactive Crystallization at Mid-Ocean Ridges. Journal of Petrology. 2010; 51:1913-40, doi: 10.1093/petrology/egq043
  9. Cousens, B., Igneous Rock Associations, 11. The Geology and Petrology of Seafloor Volcanic Rocks of the Northeastern Pacific Ocean, Offshore Canada, Geoscience Canada, 2010: 37(2).
  10. Dasgupta R, Hirschmann MM. The deep carbon cycle and melting in Earth’s interior. Earth and Planetary Science Letters. 2010; 298:1-13, doi:10.1016/j.epsl.2010.06.039
  11. Dasgupta R, Jackson MG, LEE C-. Major element chemistry of ocean island basalts — Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters. 2010; 289(3-4):377-92, doi:10.1016/j.epsl.2009.11.027
  12. Day JM, Pearson GD, Macpherson CG, Lowry D, Carracedo JC. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochimica et Cosmochimica Acta. 2010; 74:6565-89, doi:10.1016/j.gca.2010.08.021
  13. Ellam RM. The graphical presentation of lead isotope data for environmental source apportionment. Science of The Total Environment. 2010; 408:3490-2, doi:10.1016/j.scitotenv.2010.03.037
  14. Escuder-Viruete J, Pérez-Estaún A, Weis D, Friedman R. Geochemical characteristics of the Río Verde Complex, Central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc. Lithos. 2010; 114(1-2):168-85, doi:10.1016/j.lithos.2009.08.007
  15. Gerbode C, Dasgupta R. Carbonate-fluxed Melting of MORB-like Pyroxenite at 2.9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology. 2010; 51:2067-88, doi:10.1093/petrology/egq049
  16. Grange M, Scharer U, Merle R, Girardeau J, Cornen G. Plume-Lithosphere Interaction during Migration of Cretaceous Alkaline Magmatism in SW Portugal: Evidence from U-Pb Ages and Pb-Sr-Hf Isotopes. Journal of Petrology. 2010; 51:1143-70, doi:10.1093/petrology/egq018
  17. Hamelin C, Dosso L, Hanan B, Barrat J-, Ondréas H. Sr-Nd-Hf isotopes along the Pacific Antarctic Ridge from 41 to 53°S. Geophysical Research Letters. 2010; 37, doi:10.1029/2010GL042979
  18. Heinonen JS, Carlson RW, Luttinen AV. Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: A key to the origins of the Jurassic Karoo large igneous province? Chemical Geology. 2010; 277:227-44, doi:10.1016/j.chemgeo.2010.08.004
  19. Iwamori H, Albaréde F, Nakamura H. Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection. Earth and Planetary Science Letters. 2010; 299:339-51, doi:10.1016/j.epsl.2010.09.014
  20. Labanieh S, Chauvel C, Germa A, Quidelleur X, Lewin E. Isotopic hyperbolas constrain sources and processes under the Lesser Antilles arc. Earth and Planetary Science Letters. 2010; 298:35-46, doi:10.1016/j.epsl.2010.07.018
  21. Malaviarachchi SP, Makishima A, Nakamura E. Melt-Peridotite Reactions and Fluid Metasomatism in the Upper Mantle, Revealed from the Geochemistry of Peridotite and Gabbro from the Horoman Peridotite Massif, Japan. Journal of Petrology. 2010; 51:1417-45, doi:10.1093/petrology/egq024
  22. Nauret F, Moreira M, Snow JE. Rare gases in lavas from the ultraslow spreading Lena Trough, Arctic Ocean. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2010GC003027
  23. Paulick H, Münker C, Schuth S. The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism: Evidence from the southern Mid-Atlantic Ridge (7°30'S to 11°30'S) and Ascension Island. Earth and Planetary Science Letters. 2010; 296:299-310, doi:10.1016/j.epsl.2010.05.009
  24. Pearce JA, Robinson PT. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Research. 2010; 18(1):60-81, doi:10.1016/
  25. Prelević D, Stracke A, Foley SF, Romer RL, Conticelli S. Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos. 2010; 119:297-312, doi:10.1016/j.lithos.2010.07.007
  26. Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2009GC002871
  27. Regelous M, Gamble JA, Turner SP. Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas. Chemical Geology. 2010; 273:46-54, doi:10.1016/j.chemgeo.2010.02.011
  28. le Roex A, Class C, O’Connor J, Jokat W. Shona and Discovery Aseismic Ridge Systems, South Atlantic: Trace Element Evidence for Enriched Mantle Sources. Journal of Petrology. 2010; 51:2089-120, doi:10.1093/petrology/egq050
  29. Roonwal GS. Discussion: Petrography and Mineral Chemistry of Neovolcanics Occurring between Pacific and Nazca Plate Boundaries, by S.K. Pandey, J.P. Shrivastava and G.S. Roonwal. Jour. Geol. Soc. India, v.74, 2009, pp.559–572. Journal of the Geological Society of India. 2010; 75:441-2, doi:10.1007/s12594-009-0169-7
  30. Ruscitto DM, Wallace PJ, Johnson ER, Kent AJ, Bindeman IN. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary Science Letters. 2010; 298:153-61, doi:10.1016/j.epsl.2010.07.037
  31. Salters VJ, Sachi-Kocher A. An ancient metasomatic source for the Walvis Ridge basalts. Chemical Geology. 2010; 273:151-67, doi:10.1016/j.chemgeo.2010.02.010
  32. Shaw AM, Behn MD, Humphris SE, Sohn RA, Gregg PM. Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses. Earth and Planetary Science Letters. 2010; 289(3-4):311-22, doi:10.1016/j.epsl.2009.11.018
  33. Straub SM, Goldstein SL, Class C, Schmidt A, Gomez-Tuena A. Slab and Mantle Controls on the Sr-Nd-Pb-Hf Isotope Evolution of the Post 42 Ma Izu-Bonin Volcanic Arc. Journal of Petrology. 2010; 51:993-1026, doi:10.1093/petrology/egq009
  34. Tang G, Wang Q, Wyman DA, Li Z-, Zhao Z-, Jia X-, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology. 2010; 277:281-300, doi:10.1016/j.chemgeo.2010.08.012
  35. Teklay M, Scherer EE, Mezger K, Danyushevsky L. Geochemical characteristics and Sr–Nd–Hf isotope compositions of mantle xenoliths and host basalts from Assab, Eritrea: implications for the composition and thermal structure of the lithosphere beneath the Afar Depression. Contributions to Mineralogy and Petrology. 2010; 159:731-51, doi:10.1007/s00410-009-0451-0
  36. Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y, et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochemistry Geophysics Geosystems. 2010; 11, doi:10.1029/2009GC002847
  37. Tuff J, O’Neill HS. The effect of sulfur on the partitioning of Ni and other first-row transition elements between olivine and silicate melt. Geochimica et Cosmochimica Acta. 2010; 74:6180-205, doi:10.1016/j.gca.2010.08.014
  38. Wakabayashi J, Ghatak A, Basu AR. Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: A perspective from geochemistry, metamorphism, geochronology, and regional geology. Geological Society of America Bulletin. 2010; 122:1548-68, doi:10.1130/B30017.1
  39. Wanless VD, Perfit MR, Ridley WI, Klein E. Dacite Petrogenesis on Mid-Ocean Ridges: Evidence for Oceanic Crustal Melting and Assimilation. Journal of Petrology. 2010; 51:2377-410, doi:10.1093/petrology/egq056
  40. Zhang GL, Zeng ZG. Genesis of 230Th excess in basalts from mid-ocean ridges and ocean islands: Constraints from the global U-series isotope database and major and rare earth element geochemistry. Science China Earth Sciences. 2010; 53:1486-94, doi:10.1007/s11430-010-4038-4
  41. Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, et al. The Role of Water in Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index. Journal of Petrology. 2010; 51:2411-44, doi:10.1093/petrology/egq062

PetDB: 2009

  1. Arevalo R, McDonough WF, Luong M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters. 2009; 278(3-4):361-9, doi:10.1016/j.epsl.2008.12.023
  2. Baker RG, Rehkämper M, Hinkley TK, Nielsen SG, Toutain JP. Investigation of thallium fluxes from subaerial volcanism—Implications for the present and past mass balance of thallium in the oceans. Geochimica et Cosmochimica Acta. 2009; 73(20):6340-59, doi:10.1016/j.gca.2009.07.014
  3. Bézos A, Escrig S, Langmuir CH, Michael PJ, Asimow PD. Origins of chemical diversity of back-arc basin basalts: A segment-scale study of the Eastern Lau Spreading Center. Journal of Geophysical Research. 2009; 114(B6), doi:10.1029/2008JB005924
  4. Chadwick J, Perfit M, McInnes B, Kamenov G, Plank T, Jonasson I, et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth and Planetary Science Letters. 2009; 279(3-4):293-302, doi:10.1016/j.epsl.2009.01.001
  5. Chauvel C, Marini J-, Plank T, Ludden JN. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry Geophysics Geosystems. 2009; 10(1), doi:10.1029/2008GC002101
  6. Cipriani A, Bonatti E, Seyler M, Brueckner HK, Brunelli D, Dallai L, et al. A 19 to 17 Ma amagmatic extension event at the Mid-Atlantic Ridge: Ultramafic mylonites from the Vema Lithospheric Section. Geochemistry Geophysics Geosystems. 2009; 10(10), doi:10.1029/2009GC002534
  7. Clague DA, Calvert AT. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii. Bulletin of Volcanology. 2009; 71(5):533-9, doi:10.1007/s00445-008-0240-z
  8. Class C, Goldstein SL, Shirey SB. Osmium isotopes in Grande Comore lavas: A new extreme among a spectrum of EM-type mantle endmembers. Earth and Planetary Science Letters. 2009; 284(1-2):219-27, doi:10.1016/j.epsl.2009.04.031
  9. Cole RB, Stewart BW. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics. 2009; 464(1-4):118-36, doi:10.1016/j.tecto.2007.12.005
  10. Das P, Iyer SD. Geochemical characterization of oceanic basalts using Artificial Neural Network. Geochemical Transactions. 2009; 10(1):13, doi:10.1186/1467-4866-10-13
  11. Davies GF. Reconciling the geophysical and geochemical mantles: Plume flows, heterogeneities, and disequilibrium. Geochemistry Geophysics Geosystems. 2009; 10(10), doi:10.1029/2009GC002634
  12. Escrig S, Bézos A, Goldstein SL, Langmuir CH, Michael PJ. Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin–Tonga arc system. Geochemistry Geophysics Geosystems. 2009; 10(4), doi:10.1029/2008GC002281
  13. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, et al. Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth and Planetary Science Letters. 2009; 279(1-2):110-22, doi:10.1016/j.epsl.2008.12.034
  14. Granot R, Cande SC, Gee JS. The implications of long-lived asymmetry of remanent magnetization across the North Pacific fracture zones. Earth and Planetary Science Letters. 2009; 288(3-4):551-63, doi:10.1016/j.epsl.2009.10.017
  15. Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology. 2009; 158(6):757-83, doi:10.1007/s00410-009-0409-2
  16. Haase KM, Fretzdorff S, Mühe R, Garbe-Schönberg D, Stoffers P. A geochemical study of off-axis seamount lavas at the Valu Fa Ridge: Constraints on magma genesis and slab contributions in the southern Tonga subduction zone. Lithos. 2009; 112(1-2):137-48, doi:10.1016/j.lithos.2009.05.041
  17. Hahm D, Castillo PR, Hilton DR. A deep mantle source for high 3 He/ 4 He ocean island basalts (OIB) inferred from Pacific near-ridge seamount lavas. Geophysical Research Letters. 2009; 36(20), doi:10.1029/2009GL040560
  18. Humphreys ER, Niu Y. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos. 2009; 112(1-2):118-36, doi:10.1016/j.lithos.2009.04.038
  19. Ickert RB, Thorkelson DJ, Marshall DD, Ullrich TD. Eocene adakitic volcanism in southern British Columbia: Remelting of arc basalt above a slab window. Tectonophysics. 2009; 464(1-4):164-85, doi:10.1016/j.tecto.2007.10.007
  20. Jackson MG, Kurz MD, Hart SR. Helium and neon isotopes in phenocrysts from Samoan lavas: Evidence for heterogeneity in the terrestrial high 3He/4He mantle. Earth and Planetary Science Letters. 2009; 287(3-4):519-28, doi:10.1016/j.epsl.2009.08.039
  21. Kelley KA, Cottrell E. Water and the Oxidation State of Subduction Zone Magmas. Science. 2009; 325(5940):605-7, doi:10.1126/science.1174156
  22. Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L. Did the Kohistan-Ladakh island arc collide first with India? Geological Society of America Bulletin. 2009; 121(3-4):366-84, doi:10.1130/B26348.1
  23. Lambart S, Laporte D, Schiano P. An experimental study of focused magma transport and basalt–peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions. Contributions to Mineralogy and Petrology. 2009; 157(4):429-51, doi:10.1007/s00410-008-0344-7
  24. Leeman WP, Schutt DL, Hughes SS. Thermal structure beneath the Snake River Plain: Implications for the Yellowstone hotspot. Journal of Volcanology and Geothermal Research. 2009; 188(1-3):57-67, doi:10.1016/j.jvolgeores.2009.01.034
  25. Machida S, Hirano N, Kimura J-. Evidence for recycled plate material in Pacific upper mantle unrelated to plumes. Geochimica et Cosmochimica Acta. 2009; 73(10):3028-37, doi:10.1016/j.gca.2009.01.026
  26. Marques AF, Scott SD, Gorton MP, Barriga FJ, Fouquet Y. Pre-eruption history of enriched MORB from the Menez Gwen (37°50N) and Lucky Strike (37°17N) hydrothermal systems, Mid-Atlantic Ridge. Lithos. 2009; 112(1-2):18-39, doi:10.1016/j.lithos.2009.05.026
  27. Merle R, Jourdan F, Marzoli A, Renne PR, Grange M, Girardeau J. Evidence of multi-phase Cretaceous to Quaternary alkaline magmatism on Tore-Madeira Rise and neighbouring seamounts from 40Ar/39Ar ages. Journal of the Geological Society. 2009; 166(5):879-94, doi:10.1144/0016-76492008-060
  28. Mori L, Gomez-Tuena A, Schaaf P, Goldstein SL, Perez-Arvizu O, SolIs-Pichardo G. Lithospheric Removal as a Trigger for Flood Basalt Magmatism in the Trans-Mexican Volcanic Belt. Journal of Petrology. 2009; 50(11):2157-86, doi:10.1093/petrology/egp072
  29. Nesbitt HW, Young GM, Bosman SA, Longstaffe FJ. Oceanic spreading center-generated basaltic crust and associated sulfidic and carbonate-rich hydrothermal deposits in the Archean (ca. 3 Ga), North Spirit Lake greenstone belt, Ontario, Canada. Geological Society of America Bulletin. 2009; 121(11-12):1562-9, doi:10.1130/B26496.1
  30. Niu Y, O'Hara MJ. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle. Lithos. 2009; 112(1-2):1-17, doi:10.1016/j.lithos.2008.12.009
  31. Page P, Barnes S-. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Economic Geology. 2009; 104(7):997-1018, doi:10.2113/econgeo.104.7.997
  32. Perez-Gutierrez R, Solari LA, Gomez-Tuena A, Martens U. Mesozoic geologic evolutions of the Xolapa migmatitic complex north of Acapulco, southern Mexico: implications for paleogeographic reconstructions. Revista Mexicana de Ciencias Geologicas. 2009; 26(1):201-21,
  33. Pollock MA, Klein EM, Karson JA, Coleman DS. Compositions of dikes and lavas from the Pito Deep Rift: Implications for crustal accretion at superfast spreading centers. Journal of Geophysical Research. 2009; 114(B3), doi:10.1029/2007JB005436
  34. Porter KA, White WM. Deep mantle subduction flux. Geochemistry Geophysics Geosystems. 2009; 10(12), doi:10.1029/2009GC002656
  35. Portnyagin M, Hoernle K, Savelyev D. Ultra-depleted melts from Kamchatkan ophiolites: Evidence for the interaction of the Hawaiian plume with an oceanic spreading center in the Cretaceous? Earth and Planetary Science Letters. 2009; 287(1-2):194-204, doi:10.1016/j.epsl.2009.07.042
  36. Puffer JH, Block KA, Steiner JC. Transmission of Flood Basalts through a Shallow Crustal Sill and the Correlation of Sill Layers with Extrusive Flows: The Palisades Intrusive System and the Basalts of the Newark Basin, New Jersey, U.S.A. The Journal of Geology. 2009; 117(2):139-55, doi:10.1086/595663
  37. Rubin KH, Sinton JM, Maclennan J, Hellebrand E. Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nature Geoscience. 2009; 2(5):321-8, doi:10.1038/ngeo504
  38. Shimoda G. Genetic link between EMI and EMII: An adakite connection. Lithos. 2009; 112(3-4):591-602, doi:10.1016/j.lithos.2009.05.025
  39. Sobolev AV, Krivolutskaya NA, Kuzmin DV. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology. 2009; 17(3):253-86,doi:10.1134/S0869591109030047
  40. Spear FS, Hallett B, Pyle JM, Adalı S, Szymanski BK, Waters A, et al. MetPetDB: A database for metamorphic geochemistry. Geochemistry Geophysics Geosystems. 2009; 10(12), doi:10.1029/2009GC002766
  41. Starkey NA, Stuart FM, Ellam RM, Fitton GJ, Basu S, Larsen LM. Helium isotopes in early Iceland plume picrites: Constraints on the composition of high 3He/4He mantle. Earth and Planetary Science Letters. 2009; 277(1-2):91-100, doi:10.1016/j.epsl.2008.10.007
  42. Straub SM, Goldstein SL, Class C, Schmidt A. Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin. Nature Geoscience. 2009; 2(4):286-9, doi:10.1038/ngeo471
  43. Vásquez P, Glodny J, Franz G, Romer RL, Gerdes A. Origin of fayalite granitoids: New insights from the Cobquecura Pluton, Chile, and its metapelitic xenoliths. Lithos. 2009; 110(1-4):181-98, doi:10.1016/j.lithos.2009.01.001
  44. Warren JM, Shimizu N, Sakaguchi C, Dick HJ, Nakamura E. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. Journal of Geophysical Research. 2009; 114(B12), doi:10.1029/2008JB006186

PetDB: 2008

  1. Barker AK, Coogan LA, Gillis KM, Weis D. Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: Pervasive fluid flow at Pito Deep. Geochemistry Geophysics Geosystems. 2008; 9(6), doi:10.1029/2007GC001901
  2. Blichert-Toft J, Albarède F. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth and Planetary Science Letters. 2008; 265(3-4):686-702, doi:10.1016/j.epsl.2007.10.054
  3. Botcharnikov RE, Almeev RR, Koepke J, Holtz F. Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt--Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology. 2008; 49(9):1687-727, doi:10.1093/petrology/egn043
  4. Brandenburg JP, Hauri EH, van Keken PE, Ballentine CJ. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth and Planetary Science Letters. 2008; 276(1-2):1-13, doi:10.1016/j.epsl.2008.08.027
  5. Cannat M, Sauter D, Bezos A, Meyzen C, Humler E, Le Rigoleur M. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems. 2008; 9(4), doi:10.1029/2007GC001676
  6. Carpentier M, Chauvel C, Mattielli N. Pb–Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth and Planetary Science Letters. 2008; 272(1-2):199-211, doi:10.1016/j.epsl.2008.04.036
  7. Cartigny P, Pineau F, Aubaud C, Javoy M. Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth and Planetary Science Letters. 2008; 265(3-4):672-85, doi:10.1016/j.epsl.2007.11.011
  8. Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geoscience. 2008; 1(1):64-7, doi:10.1038/ngeo.2007.51
  9. Chauvet F, Lapierre H, Bosch D, Guillot S, Mascle G, Vannay J-, et al. Geochemistry of the Panjal Traps basalts (NW Himalaya): records of the Pangea Permian break-up. Bulletin de la Societe Geologique de France. 2008; 179(4):383-95, doi:10.2113/gssgfbull.179.4.383
  10. Coe N, Roex A, Gurney J, Pearson GD, Nowell G. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contributions to Mineralogy and Petrology. 2008; 156(5):627-52, doi:10.1007/s00410-008-0305-1
  11. Dilek Y, Furnes H, Shallo M. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos. 2008; 100(1-4):174-209, doi:10.1016/j.lithos.2007.06.026
  12. Escartín J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature. 2008; 455(7214):790-4, doi:10.1038/nature07333
  13. Escuder Viruete J, Joubert M, Urien P, Friedman R, Weis D, Ullrich T, et al. Caribbean island-arc rifting and back-arc basin development in the Late Cretaceous: Geochemical, isotopic and geochronological evidence from Central Hispaniola. Lithos. 2008; 104(1-4):378-404, doi:10.1016/j.lithos.2008.01.003
  14. Falloon TJ, Danyushevsky LV, Crawford AJ, Meffre S, Woodhead JD, Bloomer SH. Boninites and Adakites from the Northern Termination of the Tonga Trench: Implications for Adakite Petrogenesis. Journal of Petrology. 2008; 49(4):697-715, doi:10.1093/petrology/egm080
  15. Goldstein SL, Soffer G, Langmuir CH, Lehnert KA, Graham DW, Michael PJ. Origin of a ‘Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature. 2008; 453(7191):89-93, doi:10.1038/nature06919
  16. Grimes CB, John BE, Cheadle MJ, Wooden JL. Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206 Pb/ 238 U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR). Geochemistry Geophysics Geosystems. 2008; 9(8),doi:10.1029/2008GC002063
  17. Haase KM, Renno AD. Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chemical Geology. 2008; 257(3-4):192-202, doi:10.1016/j.chemgeo.2008.09.003
  18. Herzberg C, Asimow PD. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry Geophysics Geosystems. 2008; 9(9), doi:10.1029/2008GC002057
  19. Hirschmann MM, Ghiorso MS, Davis FA, Gordon SM, Mukherjee S, Grove TL, et al. Library of Experimental Phase Relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data. Geochemistry Geophysics Geosystems. 2008; 9(3), doi:10.1029/2007GC001894
  20. Iwamori H, Albarède F. Decoupled isotopic record of ridge and subduction zone processes in oceanic basalts by independent component analysis. Geochemistry Geophysics Geosystems. 2008; 9(4),doi:10.1029/2007GC001753
  21. Jochum KP, Nohl U. Reference materials in geochemistry and environmental research and the GeoReM database. Chemical Geology. 2008; 253(1-2):50-3, doi:10.1016/j.chemgeo.2008.04.002
  22. Keller NS, Arculus RJ, Hermann J, Richards S. Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga. Journal of Geophysical Research. 2008; 113(B8), doi:10.1029/2007JB005451
  23. Konter JG, Hanan BB, Blichert-Toft J, Koppers AA, Plank T, Staudigel H. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth and Planetary Science Letters. 2008; 275(3-4):285-95, doi:10.1016/j.epsl.2008.08.023
  24. Kvassnes AJ, Grove TL. How partial melts of mafic lower crust affect ascending magmas at oceanic ridges. Contributions to Mineralogy and Petrology. 2008; 156(1):49-71, doi:10.1007/s00410-007-0273-x
  25. Lee C-, Morton DM, Little MG, Kistler R, Horodyskyj UN, Leeman WP, et al. Regulating continent growth and composition by chemical weathering. Proceedings of the National Academy of Sciences. 2008; 105(13):4981-6, doi:10.1073/pnas.0711143105
  26. Lissenberg JC, Dick HJ. Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters. 2008; 271(1-4):311-25, doi:10.1016/j.epsl.2008.04.023
  27. Liu Y, Gao S, Kelemen PB, Xu W. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta. 2008; 72(9):2349-76, doi:10.1016/j.gca.2008.02.018
  28. Liu Y, Zong K, Kelemen P, Gao S. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology. 2008; 247(1-2):133-53, doi:10.1016/j.chemgeo.2007.10.016
  29. Malaviarachchi SP, Makishima A, Tanimoto M, Kuritani T, Nakamura E. Highly unradiogenic lead isotope ratios from the Horoman peridotite in Japan. Nature Geoscience. 2008; 1(12):859-63, doi:10.1038/ngeo363
  30. Maria AH, Luhr JF. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology. 2008; 49(12):2123-56, doi:10.1093/petrology/egn060
  31. Metcalf RV, Shervais JW. Special Paper 438: Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum?. Vol 438. Geological Society of America;  2008, doi:10.1130/2008.2438(07)
  32. Miller MS, Lee C-. Possible chemical modification of oceanic lithosphere by hotspot magmatism: Seismic evidence from the junction of Ninetyeast Ridge and the Sumatra–Andaman arc. Earth and Planetary Science Letters. 2008; 265(3-4):386-95, doi:10.1016/j.epsl.2007.10.039
  33. Nair R, Chacko T. Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology. 2008; 36(7):583, doi:10.1130/G24773A.1
  34. Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos. 2008; 106(3-4):380-98, doi:10.1016/j.lithos.2008.09.008
  35. O'Neill SC, Palme H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2008; 366(1883):4205-38, doi:10.1098/rsta.2008.0111
  36. Peate DW, Barker AK, Riishuus MS, Andreasen R. Temporal variations in crustal assimilation of magma suites in the East Greenland flood basalt province: Tracking the evolution of magmatic plumbing systems. Lithos. 2008; 102(1-2):179-97, doi:10.1016/j.lithos.2007.08.009
  37. Pilet S, Baker MB, Stolper EM. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science. 2008; 320(5878):916-9, doi: 10.1126/science.1156563
  38. Putirka K. Excess temperatures at ocean islands: Implications for mantle layering and convection. Geology. 2008; 36(4):283, doi:10.1130/G24615A.1
  39. Python M, Ceuleneer G, Arai S. Chromian spinels in mafic–ultramafic mantle dykes: Evidence for a two-stage melt production during the evolution of the Oman ophiolite. Lithos. 2008; 106(1-2):137-54, doi:10.1016/j.lithos.2008.07.001
  40. Qin L, Humayun M. The Fe/Mn ratio in MORB and OIB determined by ICP-MS. Geochimica et Cosmochimica Acta. 2008; 72(6):1660-77, doi:10.1016/j.gca.2008.01.012
  41. Sauter D, Cannat M, Mendel V. Magnetization of 0–26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61°–67°E. Geochemistry Geophysics Geosystems. 2008; 9(4), doi:10.1029/2007GC001764
  42. Secord R, Wing SL, Chew A. Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning. Paleobiology. 2008; 34(2):282-300, doi:10.1666/0094-8373(2008)034[0282:SIIEEM]2.0.CO;2
  43. Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB. Lithium isotopes in global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta. 200872(6):1626-37, doi:10.1016/j.gca.2007.12.021
  44. Toomey DR, Hooft EE. Mantle upwelling, magmatic differentiation, and the meaning of axial depth at fast-spreading ridges. Geology. 2008; 36(9):679, doi:10.1130/G24834A.1
  45. Zhang BH, Liu Y, Gao S. Petrogenetic significance of high Fe/Mn ratios of the Cenozoic basalts from eastern China. Science in China Series D: Earth Sciences. 2008; 51(2):229-39, doi:10.1130/G24834A
  46. Zhang N, Blodgett RB, Hofstra AH. Great Basin Paleontological Database. Geosphere. 2008; 4(3):520, doi:10.1130/GES00162.1

PetDB: 2007

  1. Benjamin ER, Plank T, Wade JA, Kelley KA, Hauri EH, Alvarado GE. High water contents in basaltic magmas from Irazú Volcano, Costa Rica. Journal of Volcanology and Geothermal Research. 2007; 168(1-4):68-92, doi:10.1016/j.jvolgeores.2007.08.008
  2. Bizimis M, Griselin M, Lassiter JC, Salters VJ, Sen G. Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters. 2007; 257(1-2):259-73, doi:10.1016/j.epsl.2007.02.036
  3. Blatter DL, Lang Farmer G, Carmichael IS. A North-South Transect across the Central Mexican Volcanic Belt at  100 W: Spatial Distribution, Petrological, Geochemical, and Isotopic Characteristics of Quaternary Volcanism. Journal of Petrology. 2007; 48(5):901-50, doi:/10.1093/petrology/egm006
  4. Bodinier J-, Godard M. Treatise on Geochemistry Orogenic, Ophiolitic, and Abyssal Peridotites. Elsevier;  2007, doi:10.1016/b978-0-08-095975-7.00204-7
  5. Cadoux A, Blichert-Toft J, Pinti DL, Albarède F. A unique lower mantle source for Southern Italy volcanics. Earth and Planetary Science Letters. 2007; 259(3-4):227-38, doi:10.1016/j.epsl.2007.04.001
  6. Castelli D, Lombardo B. The Plagiogranite - FeTi-Oxide Gabbro Association of Verne (Monviso Metamorphic Ophiolite, Western Alps).2007; Ofioliti, 32(1).
  7. Coogan LA. The Lower Oceanic Crust. In: Treatise on Geochemistry.;  2007. p. 1-45.
  8. Courtier AM, Jackson MG, Lawrence JF, Wang Z, Lee C-, Halama R, et al. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth and Planetary Science Letters. 2007; 264(1-2):308-16,10.1016/j.epsl.2007.10.003
  9. Falloon TJ, Green DH, Danyushevsky LV. Crystallization temperatures of tholeiite parental liquids: Implications for the existence of thermally driven mantle plumes. Vol 430. Geological Society of America;  2007, doi: 10.1130/2007.2430(12)
  10. Falloon TJ, Green DH, Danyushevsky LV, McNeill AW. The Composition of Near-solidus Partial Melts of Fertile Peridotite at 1 and 1.5 GPa: Implications for the Petrogenesis of MORB. Journal of Petrology. 2007; 49(4):591-613, doi:10.1016/j.epsl.2007.10.003
  11. van de Flierdt T, Goldstein SL, Hemming SR, Roy M, Frank M, Halliday AN. Global neodymium–hafnium isotope systematics — revisited. Earth and Planetary Science Letters. 2007; 259(3-4):432-41, doi:10.1016/j.epsl.2007.05.003
  12. Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology. 2007; 35(7):643, doi:10.1130/G23603A.1
  13. Harangi S, Downes H, Thirlwall M, Gmeling K. Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkaline Volcanic Rocks in the Western Carpathian Arc, Eastern Central Europe. Journal of Petrology. 2007; 48(12):2261-87, doi:10.1093/petrology/egm059
  14. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, et al. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry Geophysics Geosystems. 2007; 8(2), doi:10.1029/2006GC001390
  15. Hofmann AW. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Elsevier;  2007, doi:10.1016/B0-08-043751-6/02123-X
  16. Hollocher K, Robinson P, Terry MP, Walsh E. Application of major- and trace-element geochemistry to refine U-Pb zircon, and Sm/Nd or Lu/Hf sampling targets for geochronology of HP and UHP eclogites, Western Gneiss Region, Norway. American Mineralogist. 2007; 92(11-12):1919-24, doi:10.2138/am.2007.2405
  17. Hollocher K, Robinson P, Walsh E, Terry MP. The Neoproterozoic Ottfjallet dike swarm of the Middle Allochthon, traced geochemically into the Scandian Hinterland, Western Gneiss Region, Norway. American Journal of Science. 2007; 307(6):901-53, doi:10.2475/06.2007.02
  18. Ito G, van Keken PE. Hot spots and melting anomalies. In: Mantle Dynamics. Vol 7.;  2007. p. 371-435. (Treatise in Geophysics;  vol 7), doi:10.2475/06.2007.02
  19. Jackson M, Kurz M, Hart S, Workman R. New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high 3He/4He mantle. Earth and Planetary Science Letters. 2007; 264(3-4):360-74, doi:10.1016/j.epsl.2007.09.023
  20. Jacobs AM, Harding AJ, Kent GM. Axial crustal structure of the Lau back-arc basin from velocity modeling of multichannel seismic data. Earth and Planetary Science Letters. 2007; 259(3-4):239-55, doi:10.1016/j.epsl.2007.04.021
  21. van Keken PE, Ballentine CJ, Hauri EH. Convective Mixing in the Earth's Mantle. Elsevier;  2007, p. 509-525
  22. Kelemen PB, Hanghøj K, Greene AR. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Elsevier;  2007, doi:10.1016/B0-08-043751-6/03035-8
  23. Kellogg JB, Jacobsen SB, O'Connell RJ. Modeling lead isotopic heterogeneity in mid-ocean ridge basalts. Earth and Planetary Science Letters. 2007; 262(3-4):328-42, doi:10.1016/j.epsl.2007.06.018
  24. Kingsley RH, Blichert-Toft J, Fontignie D, Schilling J-. Hafnium, neodymium, and strontium isotope and parent-daughter element systematics in basalts from the plume-ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochemistry Geophysics Geosystems. 2007; 8(4), doi:10.1029/2006GC001401
  25. Koepke J, Berndt J, Feig ST, Holtz F. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology. 2007; 153(1):67-84, doi:10.1007/s00410-006-0135-y
  26. Kuzmichev AB, Pease VL. Siberian trap magmatism on the New Siberian Islands: constraints for Arctic Mesozoic plate tectonic reconstructions. Journal of the Geological Society. 2007; 164(5):959-68, doi:10.1144/0016-76492006-090
  27. Lucassen F, Franz G, Romer RL, Schultz F, Dulski P, Wemmer K. Pre-Cenozoic intra-plate magmatism along the Central Andes (17–34°S): Composition of the mantle at an active margin. Lithos. 2007; 99(3-4):312-38, doi:10.1016/j.lithos.2007.06.007
  28. Lustrino M, Wilson M. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Science Reviews. 2007; 81(1-2):1-65, doi:10.1016/j.earscirev.2006.09.002
  29. Mallamn G, ONeill H. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochimica et Cosmochimica Acta. 2007; 71(11):2837-57, doi:10.1016/j.gca.2007.03.028
  30. Meyzen CM, Blichert-Toft J, Ludden JN, Humler E, Mével C, Albarède F. Isotopic portrayal of the Earth’s upper mantle flow field. Nature. 2007; 447(7148):1069-74, doi:10.1038/nature05920
  31. Mori L, Gómez-Tuena A, Cai Y, Goldstein SL. Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt. Chemical Geology. 2007; 244(3-4):452-73, doi:10.1016/j.chemgeo.2007.07.002
  32. Murray CG. Devonian supra-subduction zone setting for the Princhester and Northumberland Serpentinites: implications for the tectonic evolution of the northern New England Orogen. Australian Journal of Earth Sciences. 2007; 54(7):899-925, doi:10.1080/08120090701392747
  33. Nakamura K, Kato Y. A new geochemical approach for constraining a marine redox condition of Early Archean. Earth and Planetary Science Letters. 2007; 261(1-2):296-302, doi:10.1016/j.epsl.2007.07.020
  34. Natland JH. Delta Nb and the role of magma mixing at the East Pacific Rise and Iceland. Vol 430. Geological Society of America;  2007, doi:10.1130/2007.2430(21)
  35. Nishio Y, Nakai S, Ishii T, Sano Y. Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction: Constraints on the origin of the DUPAL anomaly. Geochimica et Cosmochimica Acta. 2007; 71(3):745-59, doi:10.1016/j.gca.2006.10.004
  36. Niu Y, O'Hara MJ. Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth: a New Perspective. Journal of Petrology. 2007; 49(4):633-64, doi:10.1093/petrology/egm051
  37. Putirka KD, Perfit M, Ryerson FJ, Jackson MG. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology. 2007; 241(3-4):177-206, doi:10.1016/j.chemgeo.2007.01.014
  38. Python M, Ceuleneer G, Ishida Y, Barrat J-, Arai S. Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth and Planetary Science Letters. 2007; 255(3-4):289-305, doi:10.1016/j.epsl.2006.12.030
  39. Ray D, Iyer SD, Banerjee R, S. M, Widdowson M. A Petrogenetic Model of Basalts from the Northern Central Ridge: 3-11degS. Acta Geologica Sinica. 2007; 81.
  40. Rubin KH, Sinton JM. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters. 2007; 260(1-2):257-76, doi:10.1016/j.epsl.2007.05.035
  41. Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature. 2007; 446(7139):1062-5, doi:10.1038/nature05748
  42. Villiger S, Müntener O, Ulmer P. Crystallization pressures of mid-ocean ridge basalts derived from major element variations of glasses from equilibrium and fractional crystallization experiments. Journal of Geophysical Research. 2007; 112(B1), doi:10.1029/2006JB004342
  43. Yamamoto M, Morgan JP, Morgan JW. Global plume-fed asthenosphere flow—II: Application to the geochemical segmentation of mid-ocean ridges. Vol 430. Geological Society of America;  2007, doi:10.1130/2007.2430(10)
  44. Zhou J, Li X-, Ge W, Li Z-. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research. 2007; 12(1-2):184-97, doi:10.1016/
  45. Zhu B. Pb-Sr-Nd Isotopic Systematics of Mantle-derived Rocks in the World. Earth Science Frontiers. 2007; 14(2):24-36, doi:10.1016/S1872-5791(07)60012-8

PetDB: 2006

  1. Burke K, Khan S. Geoinformatic approach to global nepheline syenite and carbonatite distribution: Testing a Wilson cycle model. Geosphere. 2006; 2(1):53, doi:10.1130/GES00027.1
  2. De Astis G, Kempton PD, Peccerillo A, Wu TW. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy. Contributions to Mineralogy and Petrology. 2006; 151(3):331-51, doi:10.1007/s00410-006-0062-y
  3. Debaille V, Blichert-Toft J, Agranier A, Doucelance R, Schiano P, Albarede F. Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35°N. Earth and Planetary Science Letters. 2006; 241(3-4):844-62, doi:10.1016/j.epsl.2005.11.004
  4. Dmitriev LV, Sokolov YS, Plechova AA. Statistical assessment of variations in the compositional and P-T parameters of the evolution of mid-oceanic ridge basalts and their regional distribution. Petrology. 2006; 14(3):209-29, doi:10.1134/S0869591106030015
  5. Eason D, Sinton J. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters. 2006; 252(3-4):423-36, doi:10.1016/j.epsl.2006.09.048
  6. Evans KA. Redox decoupling and redox budgets: Conceptual tools for the study of earth systems. Geology. 2006; 34(6):489, doi:10.1130/G22390.1
  7. Falloon TJ, Berry RF, Robinson P, Stolz AJ. Whole-rock geochemistry of the Hili Manu peridotite, East Timor: implications for the origin of Timor ophiolites. Australian Journal of Earth Sciences. 2006; 53(4):637-49, doi:10.1080/08120090600686793
  8. Godard M, Bosch D, Einaudi F. A MORB source for low-Ti magmatism in the Semail ophiolite. Chemical Geology. 2006; 234(1-2):58-78, doi:10.1016/j.chemgeo.2006.04.005
  9. Gomez-Tuena A, Langmuir CH, Goldstein SL, Straub SM, Ortega-Gutierrez F. Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt. Journal of Petrology. 2006; 48(3):537-62, doi:/10.1093/petrology/egl071
  10. Green NL. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos. 2006; 87(1-2):23-49, doi:10.1016/j.lithos.2005.05.003
  11. Hart S, Blusztajn J. Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin. Chemical Geology. 2006; 235(3-4):222-37, doi:10.1016/j.chemgeo.2006.07.001
  12. Hauri E, Gaetani G, Green T. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions. Earth and Planetary Science Letters. 2006; 248(3-4):715-34, doi:10.1016/j.epsl.2006.06.014
  13. Hirano N, Takahashi E, Yamamoto J, Abe N, Ingle S, Kaneoka I, et al. Volcanism in Response to Plate Flexure. Science. 2006; 313(5792):1426-8, doi:10.1126/science.1128235
  14. Ito G, Mahoney JJ. Melting a high 3He/4He source in a heterogeneous mantle. Geochemistry Geophysics Geosystems. 2006; 7(5), doi:10.1029/2005GC001158
  15. Jackson M, Hart S. Strontium isotopes in melt inclusions from Samoan basalts: Implications for heterogeneity in the Samoan plume. Earth and Planetary Science Letters. 2006; 245(1-2):260-77, doi:10.1016/j.epsl.2006.02.040
  16. Janousek V, Farrow CM, Erban V. Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology. 2006; 47(6):1255-9, doi:10.1093/petrology/egl013
  17. van Keken PE, Ballentine CJ, Hauri EH. Convective Mixing in the Earth's Mantle. In: Carlson RW, editor. The Mantle and Core: Treatise on Geochemistry. Vol 2. 2nd ed. Elsevier;  2006. p. 471-91.
  18. Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E. Mantle melting as a function of water content beneath back-arc basins. Journal of Geophysical Research. 2006; 111(B9), doi:10.1029/2005JB003732
  19. Khan SD, Flower MF, Sultan MI, Sandvol E. Introduction to TETHYS—an interdisciplinary GIS database for studying continental collisions. Journal of Asian Earth Sciences. 2006; 26(6):613-25, doi:10.1016/j.jseaes.2004.12.001
  20. Kimura J-, Sisson TW, Nakano N, Coombs ML, Lipman PW. Isotope geochemistry of early Kilauea magmas from the submarine Hilina bench: The nature of the Hilina mantle component. Journal of Volcanology and Geothermal Research. 2006; 151(1-3):51-72, doi:10.1016/j.jvolgeores.2005.07.024
  21. Lee C-, Cheng X, Horodyskyj U. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology. 2006; 151(2):222-42, doi:10.1007/s00410-005-0056-1
  22. Leroux P, Shirey S, Hauri E, Perfit M, Bender J. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth and Planetary Science Letters. 2006; 251(3-4):209-31, doi:10.1016/j.epsl.2006.09.012
  23. Lucassen F, Kramer W, Bartsch V, Wilke H-, Franz G, Romer RL, et al. Nd, Pb, and Sr isotope composition of juvenile magmatism in the Mesozoic large magmatic province of northern Chile (18–27°S): indications for a uniform subarc mantle. Contributions to Mineralogy and Petrology. 2006; 152(5):571-89, doi:10.1007/s00410-006-0119-y
  24. Merle R, Scharer U, Girardeau J, Cornen G. Cretaceous seamounts along the continent–ocean transition of the Iberian margin: U–Pb ages and Pb–Sr–Hf isotopes. Geochimica et Cosmochimica Acta. 2006; 70(19):4950-76, doi:10.1016/j.gca.2006.07.004
  25. Moore CJ, Habermann RE. Core data stewardship: a long-term perspective. Geological Society, London, Special Publications. 2006; 267(1):241-51, doi:10.1144/GSL.SP.2006.267.01.18
  26. Nauret F, Abouchami W, Galer S, Hofmann A, Hemond C, Chauvel C, et al. Correlated trace element-Pb isotope enrichments in Indian MORB along 18–20°S, Central Indian Ridge. Earth and Planetary Science Letters. 2006; 245(1-2):137-52, doi:10.1016/j.epsl.2006.03.015
  27. Panter KS, Blusztajn J, Hart SR, Kyle PR, Esser R, McIntosh WC. The Origin of HIMU in the SW Pacific: Evidence from Intraplate Volcanism in Southern New Zealand and Subantarctic Islands. Journal of Petrology. 2006; 47(9):1673-704, doi:10.1093/petrology/egl024
  28. Rannou E, Caroff M, Cordier C. A geochemical approach to model periodically replenished magma chambers: Does oscillatory supply account for the magmatic evolution of EPR 17–19°S? Geochimica et Cosmochimica Acta. 2006; 70(18):4783-96, doi:10.1016/j.gca.2006.07.007
  29. Achramm B, Jochum K, Sarbas B, Nohl U. GEOROC and GeoReM—Linking the information of two Geological databases. Geochimica et Cosmochimica Acta. 2006; 70(18):A565, doi:10.1016/j.gca.2006.06.1045
  30. Shragge J, Snow CA. Bayesian Geochemical Discrimination of Mafic Volcanic Rocks. American Journal of Science. 2006; 306(3):191-209, doi:10.2475/ajs.306.3.191
  31. Snow CA. A reevaluation of tectonic discrimination diagrams and a new probabilistic approach using large geochemical databases: Moving beyond binary and ternary plots. Journal of Geophysical Research. 2006; 111(B6), doi:10.1029/2005JB003799
  32. Spadea P, D'Antonio M. Initiation and evolution of intra-oceanic subduction in the Uralides: Geochemical and isotopic constraints from Devonian oceanic rocks of the Southern Urals, Russia. The Island Arc. 2006; 15(1):7-25, doi:10.1111/j.1440-1738.2006.00514.x
  33. Vermeesch P. Tectonic discrimination diagrams revisited. Geochemistry Geophysics Geosystems. 2006; 7(6), doi:10.1029/2005GC001092
  34. Vermeesch P. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta. 2006; 70(7):1839-48, doi:10.1016/j.gca.2005.12.016
  35. Vlastélic I, Lewin E, Staudacher T. Th/U and other geochemical evidence for the Réunion plume sampling a less differentiated mantle domain. Earth and Planetary Science Letters. 2006; 248(1-2):379-93, doi:10.1016/j.epsl.2006.06.003
  36. Walker DJ, Bowers TD, Black RA, Glazer AF, Farmer GL, Carlson RW. A geochemical database for western North American volcanic and intrusive rocks (NAVDAT). Geological Society of America, Special Paper. 2006; 397:61-71, doi:10.1130/2006.2397(05)
  37. Wen L. A compositional anomaly at the Earth's core–mantle boundary as an anchor to the relatively slowly moving surface hotspots and as source to the DUPAL anomaly. Earth and Planetary Science Letters. 2006; 246(1-2):138-48, doi:10.1016/j.epsl.2006.04.024
  38. Wilson A, Chunnett G. Trace Element and Platinum Group Element Distributions and the Genesis of the Merensky Reef, Western Bushveld Complex, South Africa. Journal of Petrology. 2006; 47(12):2369-403, doi:/10.1093/petrology/egl048
  39. Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J. Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth and Planetary Science Letters. 2006; 241(3-4):932-51, doi:10.1016/j.epsl.2005.10.028

PetDB: 2005

  1. Agranier A, Blichert Toft J, Graham D, Debaille V, Schiano P, Albarede F. The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters. 2005; 238(1-2):96-109, doi:10.1016/j.epsl.2005.07.011
  2. Albarède F. Geophysical Monograph Series Earth's Deep Mantle: Structure, Composition, and Evolution: The survival of mantle geochemical heterogeneities. In: van der Hilst RD, Bass JD, Matas J, Trampert J, editors. Vol 160. Washington, D. C.: American Geophysical Union;  2005. p. 27-46, doi:10.1029/160GM04
  3. Ballentine CJ, Marty B, Sherwood Lollar B, Cassidy M. Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature. 2005; 433(7021):33-8, doi:10.1038/nature03182
  4. Becker M, le Roex AP. Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. Journal of Petrology. 2005; 47(4):673-703, doi:10.1093/petrology/egi089
  5. Bizimis M, Sen G, Salters V, Keshav S. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Evidence for a depleted component in Hawaiian volcanism. Geochimica et Cosmochimica Acta. 2005; 69(10):2629-46, doi:10.1016/j.gca.2005.01.005
  6. Cann JR, Smith DK. Evolution of volcanism and faulting in a segment of the Mid-Atlantic Ridge at 25°N. Geochemistry Geophysics Geosystems. 2005; 6(9), doi:10.1029/2005GC000954
  7. Chadwick J, Perfit M, Ridley I, Jonasson, Kamenov G, Chadwick W, et al. Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge. Journal of Geophysical Research. 2005; 110(B3), doi:10.1029/2003JB002767
  8. Chazot G, Charpentier S, Kornprobst, Vannucci R, Beatrice L. Lithospheric Mantle Evolution during Continental Break-Up: The West Iberia Non-Volcanic Passive Margin. Journal of Petrology. 2005; 46(12):2527-68, doi:10.1093/petrology/egi064
  9. Class C, Goldstein SL. Evolution of helium isotopes in the Earth's mantle. Nature. 2005; 436(7054):1107-12, doi:10.1038/nature03930
  10. Conceição RV, Mallmann G, Koester E, Schilling M, Bertotto GW, Rodriguez-Vargas A. Andean subduction-related mantle xenoliths: Isotopic evidence of Sr–Nd decoupling during metasomatism. Lithos. 2005; 82(3-4):273-87, doi:10.1016/j.lithos.2004.09.022
  11. Dasgupta R, Hirschmann MM, Dellas N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contributions to Mineralogy and Petrology. 2005; 149(3):288-305, doi:10.1007/s00410-004-0649-0
  12. Eiler JM. Oxygen isotope constraints on the sources of Central American arc lavas. Geochemistry Geophysics Geosystems. 2005; 6(7), doi:10.1029/2004GC000804
  13. Escrig S, Schiano P, Schilling J-, Allègre C. Rhenium–osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°–50° S). Earth and Planetary Science Letters. 2005; 235(3-4):528-48, doi:10.1016/j.epsl.2005.04.035
  14. Foulger GR, Natland JH, Anderson DL. Genesis of the Iceland melt anomaly by plate tectonic processes. Vol 388. Geological Society of America;  2005, doi:/10.1130/0-8137-2388-4.595
  15. Foulger GR, Natland JH, Anderson DL. A source for Icelandic magmas in remelted Iapetus crust. Journal of Volcanology and Geothermal Research. 2005; 141(1-2):23-44, doi:10.1016/j.jvolgeores.2004.10.006
  16. Geist DJ. Wolf Volcano, Galapagos Archipelago: Melting and Magmatic Evolution at the Margins of a Mantle Plume. Journal of Petrology. 2005; 46(11):2197-224, doi:10.1093/petrology/egi052
  17. Gillis KM, Coogan LA, Pedersen R. Strontium isotope constraints on fluid flow in the upper oceanic crust at the East Pacific Rise. Earth and Planetary Science Letters. 2005; 232(1-2):83-94, doi:10.1016/j.epsl.2005.01.008
  18. Green DH, Falloon TJ. Primary magmas at mid-ocean ridges, "hotspots", and other intraplate settings;  constraints on mantle potential temperature. Geological Society of America, Special paper. 2005; 388:217-47, doi:10.1130/0-8137-2388-4.217
  19. Green NL, Sinha KA. Consequences of varied slab age and thermal structure on enrichment processes in the sub-arc mantle of the northern Cascadia subduction system. Journal of Volcanology and Geothermal Research. 2005; 140(1-3):107-32, doi:10.1016/j.jvolgeores.2004.07.017
  20. Huang S. Petrogenesis of lavas from Detroit Seamount: Geochemical differences between Emperor Chain and Hawaiian volcanoes. Geochemistry Geophysics Geosystems. 2005; 6(1), doi:10.1029/2004GC000756
  21. Ito G, Mahoney JJ. Flow and melting of a heterogeneous mantle. Earth and Planetary Science Letters. 2005; 230(1-2):47-63, doi:10.1016/j.epsl.2004.10.035
  22. Janney PE. Hafnium Isotope and Trace Element Constraints on the Nature of Mantle Heterogeneity beneath the Central Southwest Indian Ridge (13 E to 47 E). Journal of Petrology. 2005; 46(12):2427-64, doi:10.1093/petrology/egi060
  23. Kokfelt T, Lundstrom C, Hoernle K, Hauff F, Werner R. Plume–ridge interaction studied at the Galápagos spreading center: Evidence from 226Ra–230Th–238U and 231Pa–235U isotopic disequilibria. Earth and Planetary Science Letters. 2005; 234(1-2):165-87, doi:10.1016/j.epsl.2005.02.031Get
  24. Lee C-, Lenardic A, Cooper CM, Niu F, Levander A. The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth and Planetary Science Letters. 2005; 230(3-4):379-95, doi:10.1016/j.epsl.2004.11.019
  25. Lee C-. Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions. Journal of Petrology. 2005; 46(11):2313-36, doi:10.1093/petrology/egi056
  26. Ligi M, Bonatti E, Cipriani A, Ottolini L. Water-rich basalts at mid-ocean-ridge cold spots. Nature. 2005; 434(7029):66-9, doi:10.1038/nature03264
  27. Lindsay JM, Trumbull RB, Siebel W. Geochemistry and petrogenesis of late Pleistocene to Recent volcanism in Southern Dominica, Lesser Antilles. Journal of Volcanology and Geothermal Research. 2005; 148(3-4):253-94, doi:10.1016/j.jvolgeores.2005.04.018
  28. Nonnotte P, Ceuleneer G, Benoit M. Genesis of andesitic–boninitic magmas at mid-ocean ridges by melting of hydrated peridotites: Geochemical evidence from DSDP Site 334 gabbronorites. Earth and Planetary Science Letters. 2005; 236(3-4):632-53, doi:10.1016/j.epsl.2005.05.026
  29. Plank T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology. 2005; 46(5):921-44, doi:10.1093/petrology/egi005
  30. Pollock MA, Klein EM, Karson JA, Tivey MA. Temporal and spatial variability in the composition of lavas exposed along the Western Blanco Transform Fault. Geochemistry Geophysics Geosystems. 2005; 6(11), doi:10.1029/2005GC001026
  31. Portnyagin MV, Savel'ev DP, Hoernle K. Plume-related association of cretaceous oceanic basalts of eastern Kamchatka: compositions of spinel and parental magmas. Petrology, 2005; 13
  32. Portnyagin M, Hoernle K, Avdeiko G, Hauff F, Werner R, Bindeman I, et al. Transition from arc to oceanic magmatism at the Kamchatka-Aleutian junction. Geology. 2005; 33(1):25, doi:10.1130/G20853.1
  33. Saha A, Basu AR, Wakabayashi J, Wortman GL. Geochemical evidence for a subducted infant arc in Franciscan high-grade-metamorphic tectonic blocks. Geological Society of America Bulletin. 2005; 117(9):1318, doi:10.1130/B25593.1
  34. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK. An olivine-free mantle source of Hawaiian shield basalts. Nature. 2005; 434(7033):590-7, doi:10.1038/nature03411
  35. Stracke A, Hofmann AW, Hart SR. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry Geophysics Geosystems. 2005; 6(5), doi:10.1029/2004GC000824
  36. Tommasini S, Manetti P, Innocenti F, Abebe T, Sintoni M, Conticelli S. The Ethiopian subcontinental mantle domains: geochemical evidence from Cenozoic mafic lavas. Mineralogy and Petrology. 2005; 84(3-4):259-81, doi:10.1007/s00710-005-0081-9
  37. Vlastélic I. Rapid Change of Lava Composition from 1998 to 2002 at Piton de la Fournaise (Reunion) Inferred from Pb Isotopes and Trace Elements: Evidence for Variable Crustal Contamination. Journal of Petrology. 2005; 46(1):79-107, doi:10.1093/petrology/egh062
  38. Vlastélic I. Miocene climate change recorded in the chemical and isotopic (Pb, Nd, Hf) signature of Southern Ocean sediments. Geochemistry Geophysics Geosystems. 2005; 6(3), doi:10.1029/2004GC000819
  39. Workman RK, Hart SR. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters. 2005; 231(1-2):53-72, doi:10.1016/j.epsl.2004.12.005

PetDB: 2004

  1. Albarede F. The Stable Isotope Geochemistry of Copper and Zinc. Reviews in Mineralogy and Geochemistry. 2004; 55(1):409-27, doi:10.2138/gsrmg.55.1.409
  2. Asimow PD, Longhi J. The Significance of Multiple Saturation Points in the Context of Polybaric Near-fractional Melting. Journal of Petrology. 2004; 45(12):2349-67, doi:10.1093/petrology/egh043
  3. Bryce JG, DePaolo DJ. Pb isotopic heterogeneity in basaltic phenocrysts. Geochimica et Cosmochimica Acta. 2004; 68(21):4453-68, doi:10.1016/j.gca.2004.01.016
  4. Carbotte SM, Small C, Donnelly K. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges. Nature. 2004; 429(6993):743-6, doi:10.1038/nature02652
  5. Cipriani A, Brueckner HK, Bonatti E, Brunelli D. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs from the Mid-Atlantic Ridge. Geology. 2004; 32(8):657, doi:10.1130/G20560.1
  6. Dasgupta R, Hirschmann MM, Withers AC. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters. 2004; 227(1-2):73-85, doi:10.1016/j.epsl.2004.08.004
  7. Fitton JG, Godard M. Origin and evolution of magmas on the Ontong Java Plateau. Geological Society, London, Special Publications. 2004; 229(1):151-78, doi:10.1144/GSL.SP.2004.229.01.10
  8. van de Flierdt T, Frank M, Halliday AN, Hein JR, Hattendorf B, Günther D, et al. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget—a combined Pb–Hf–Nd isotope approach. Earth and Planetary Science Letters. 2004; 222(1):259-73, doi:10.1016/j.epsl.2004.02.025
  9. Gannoun A. Osmium Isotope Heterogeneity in the Constituent Phases of Mid-Ocean Ridge Basalts. Science. 2004; 303(5654):70-2, doi:10.1126/science.1090266
  10. Gill RC, Aparicio A, El Azzouzi M, Hernandez J, Thirlwall MF, Bourgois J, et al. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes. Lithos. 2004; 78(4):363-88,doi:10.1016/j.lithos.2004.07.002
  11. Herzberg C. Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle. Journal of Petrology. 2004; 45(12):2389-405, doi:10.1093/petrology/egh040
  12. Herzberg C. Geodynamic Information in Peridotite Petrology. Journal of Petrology. 2004; 45(12):2507-30, doi:10.1093/petrology/egh039
  13. Jellinek MA, Manga M. Links between long-lived hot spots, mantle plumes, D, and plate tectonics. Reviews of Geophysics. 2004; 42(3), doi: 10.1029/2003RG000144
  14. John T, Scherer EE, Haase K, Schenk V. Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth and Planetary Science Letters. 2004; 227(3-4):441-56, doi:10.1016/j.epsl.2004.09.009
  15. Koepke J, Feig ST, Snow J, Freise M. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions to Mineralogy and Petrology. 2004; 146(4):414-32, doi:10.1007/s00410-003-0511-9
  16. Kvassnes AJ, Strand AH, Moen-Eikeland H, Pedersen RB. The Lyngen Gabbro: the lower crust of an Ordovician Incipient Arc. Contributions to Mineralogy and Petrology. 2004; 148(3):358-79, doi:10.1007/s00410-004-0609-8
  17. Li Z-, Lee C-. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters. 2004; 228(3-4):483-93, doi:10.1016/j.epsl.2004.10.006
  18. Martínez-Serrano RG, Schaaf P, Solís-Pichardo G, del Hernández-Bernal MS, Hernández-Treviño T, Julio Morales-Contreras J, et al. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico. Journal of Volcanology and Geothermal Research. 2004; 138(1-2):77-110, doi:10.1016/j.jvolgeores.2004.06.007
  19. Meibom A, Anderson DL. The statistical upper mantle assemblage. Earth and Planetary Science Letters. 2004; 217(1-2):123-39, doi:10.1016/S0012-821X(03)00573-9
  20. Niu Y, Hekinian R. Oceanic Hotspots Ridge Suction Drives Plume-Ridge Interactions. Hekinian R, Cheminée J-L, Stoffers P, editors. Berlin, Heidelberg: Springer Berlin Heidelberg;  2004, doi:10.1007/978-3-642-18782-7_10
  21. Roberge J, White RV, Wallace PJ. Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): implications for magmatic processes and source region compositions. Geological Society, London, Special Publications. 2004; 229(1):239-57, doi:10.1144/GSL.SP.2004.229.01.14
  22. Rudnick RL, Gao S, Ling W-, Liu Y-, McDonough WF. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos. 2004; 77(1-4):609-37, doi:10.1016/j.lithos.2004.03.033
  23. Salters VJ, Stracke A. Composition of the depleted mantle. Geochemistry Geophysics Geosystems. 2004; 5(5), doi:10.1029/2003GC000597
  24. Straub SM, Layne GD, Schmidt A, Langmuir CH. Volcanic glasses at the Izu arc volcanic front: New perspectives on fluid and sediment melt recycling in subduction zones. Geochemistry Geophysics Geosystems. 2004; 5(1), doi:10.1029/2002GC000408
  25. Thirlwall M, Gee MA, Taylor RN, Murton BJ. Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochimica et Cosmochimica Acta. 2004; 68(2):361-86, doi:10.1016/S0016-7037(03)00424-1

EarthChem: 2023

  1. Amadori, C., Maino, M., Marini, M., Casini, L., Carrapa, B., Jepson, G., Hayes, R. G., Nicola, C., Reguzzi, S., & Di Giulio, A., n.d., The role of mantle upwelling on the thermal history of the Tertiary-Piedmont Basin at the Alps-Apennines tectonic boundary. Basin Research. doi:10.1111/bre.12752
  2. Antonelli, M. A., Yakymchuk, C., Schauble, E. A., Foden, J., Janoušek, V., Moyen, J.-F., Hoffmann, J., Moynier, F., & Bachmann, O., 2023, Granite petrogenesis and the δ44Ca of continental crust, Earth and Planetary Science Letters. doi:10.1016/j.epsl.2023.118080
  3. Benet, D., Costa, F., Widiwijayanti, C., Pallister, J., Pedreros, G., Allard, P., Humaida, H., & Aoki, Y., 2023, VolcashDB: Volcanic ash particle image and classification database.
  4. Burgos, V., Jenkins, S. F., Troncoso, L. B., Moya, C. V. P., Bebbington, M., Newhall, C., Amigo, A., Alonso, J. P., & Taisne, B., 2023, Identifying analogues for Melimoyu, a long-dormant and data-limited volcano in Chile, through hierarchical clustering. doi:10.31223/X57M15
  5. Francke, A., Tsimosh, O., Tibby, J., Reid, M., Fletcher, M.-S., & Tyler, J. J., n.d., Contemporary controls on terrestrial carbon characteristics in temperate and sub-tropical Australian wetlands, Journal of Geophysical Research: Biogeosciences. doi:10.1029/2022JG007092
  6. Fernandez, A., Løland, M. H., Maccali, J., Krüger, Y. S., Vonhof, H. B., Sodemann, H., & Meckler, N., 2023, Characterization and correction of evaporative artefacts in speleothem fluid inclusion isotope analyses as applied to a stalagmite from Borneo. [Preprint]. doi:10.22541/essoar.167340715.57808428/v1
  7. González, F. A., Bello-González, J. P., Contreras-Reyes, E., Tréhu, A. M., & Geersen, J., 2023, Shallow structure of the Northern Chilean marine forearc between 19°S - 21°S using multichannel seismic reflection and refraction data. Journal of South American Earth Sciences. doi:10.1016/j.jsames.2023.104243
  8. Haines, S. H., & van der Pluijm, B. A., n.d., Fault gouge dating in the Spanish Pyrenees: Fault ages, thrust propagation sequence, wall-rock provenance, and thermal constraints, Tectonics. doi:10.1029/2022TC007251
  9. Hill, M. J., Bain, D. J., Rossi, R. J., & Abbott, M. B., 2023, Pond Sediments Reveal the Increasing Importance of Road Runoff as a Source of Metal Contamination in Industrialized Urban Environments Downwind of Pittsburgh, Pennsylvania (USA), ACS ES&T Water. doi:10.1021/acsestwater.2c00240
  10. Hoyer, P. A., Haase, K. M., Regelous, M., & Fluteau, F., 2023, Systematic and Temporal Geochemical Changes in the Upper Deccan Lavas: Implications for the Magma Plumbing System of Flood Basalt Provinces, Geochemistry, Geophysics, Geosystems. doi:10.1029/2022GC010750
  11. Lough, A. J. M., Tagliabue, A., Demasy, C., Resing, J. A., Mellett, T., Wyatt, N. J., & Lohan, M. C., 2023, Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: Implications for the addition of iron to the deep ocean, Biogeosciences. doi:10.5194/bg-20-405-2023
  12. Li, C., Smith, P., Bai, X., Tan, Q., Luo, G., Li, Q., Wang, J., Wu, L., Chen, F., Deng, Y., Hu, Z., Yang, Y., Tian, S., Lu, Q., Xi, H., Ran, C., & Zhang, S., 2023, Effects of carbonate minerals and exogenous acids on carbon flux from the chemical weathering of granite and basalt, Global and Planetary Change. doi:10.1016/j.gloplacha.2023.104053
  13. Ma, C., Tang, Y., Ying, J., & Zhang, H., n.d., The phosphorus budget of the silicate Earth based on an updated estimate of the P/Nd ratio, Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB025384
  14. McNab, F., & Ball, P. W., 2023, meltPT: A Python package for basaltic whole-rock thermobarometric analysis with application to Hawai’i.
  15. Mourey, A. J., Shea, T., & Hammer, J. E., 2023, Preservation of Magma Recharge Signatures in Kīlauea Olivine During Protracted Storage, Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB025523
  16. Narmandakh, D., Butscher, C., Doulati Ardejani, F., Yang, H., Nagel, T., & Taherdangkoo, R., 2023, The use of feed-forward and cascade-forward neural networks to determine swelling potential of clayey soils, Computers and Geotechnics. doi:10.1016/j.compgeo.2023.105319
  17. Narváez, D. F., Samaniego, P., Koga, K. T., Rose-Koga, E. F., Hidalgo, S., & Ratzov, G., 2023, Two types of slab components under Ecuadorian volcanoes supported by primitive olivine-hosted melt inclusion study, Lithos. doi:10.1016/j.lithos.2023.107049
  18. Nestola, F., Regier, M. E., Luth, R. W., Pearson, D. G., Stachel, T., McCammon, C., Wenz, M. D., Jacobsen, S. D., Anzolini, C., Bindi, L., & Harris, J. W., 2023, Extreme redox variations in a superdeep diamond from a subducted slab, Nature. doi:10.1038/s41586-022-05392-8
  19. Osman, M. S. M., Azer, M. K., Asimow, P. D., Price, J. B., & Ibañez-Mejia, M., 2023, Mineralogy, geochronology, and geochemistry of the calc-alkaline Um Takha white granite pluton, South Sinai, Egypt, Lithos. doi:10.1016/j.lithos.2023.107021
  20. Pinet, N., Haeri-Ardakani, O., Jautzy, J., Savard, M. M., Sack, P., & Mercier-Langevin, P., 2023, Thermal history of Carlin-type gold deposits in Yukon (Canada) as revealed by organic matter geothermometry, clumped isotope data, fluid inclusion microthermometry, and apatite fission-track analyses, Mineralium Deposita. doi:10.1007/s00126-023-01162-2
  21. Plunkett, G., Sigl, M., McConnell, J. R., Pilcher, J. R., & Chellman, N. J., 2023, The significance of volcanic ash in Greenland ice cores during the Common Era, Quaternary Science Reviews. doi:10.1016/j.quascirev.2022.107936
  22. Sani, C., Sanfilippo, A., Peyve, A. A., Genske, F., & Stracke, A., 2023, Earth Mantle’s Isotopic Record of Progressive Chemical Depletion. AGU Advances. doi:10.1029/2022AV000792
  23. Sano, Y., Kagoshima, T., Zhang, M., Takahata, N., Onoue, T., Shibata, T., Nishio, Y., Chen, A.-T., Lee, H., Fischer, T. P., & Zhao, D., 2023, Older magma at Aso caldera than at Unzen stratovolcano in south west Japan as recorded through helium isotopes, Communications Earth & Environment. doi:10.1038/s43247-022-00649-6
  24. Shafaii Moghadam, H., Li, Q.-L., Li, X.-H., Chiaradia, M., Karsli, O., Hoernle, K. A., & Griffin, W. L., 2023, Mantle-derived high-K magmatic fluxes in northeast Iran arc: Constraints from zircon U-Pb-O-Hf and bulk rock major-trace elements and Sr-Nd-Pb isotopes, Gondwana Research. doi:10.1016/
  25. Stolfus, B. M., Allman, L. J., Young, S. A., Calner, M., Hartke, E. R., Oborny, S. C., Bancroft, A. M., & Cramer, B. D., 2023, Expansion of Reducing Marine Environments During the Ireviken Biogeochemical Event: Evidence From the Altajme Core, Gotland, Sweden. Paleoceanography and Paleoclimatology. doi:10.1029/2022PA004484
  26. Thomer, A. K., Wofford, M. F., Lenard, M. C., Dominguez Vidana, S., & Goring, S. J., 2023, Revealing Earth science code and data-use practices using the Throughput Graph Database. In X. Ma, M. Mookerjee, L. Hsu, & D. Hills (Eds.), Recent Advancement in Geoinformatics and Data Science, Geological Society of America. doi:10.1130/2022.2558(10)
  27. Wang, K., Zhang, T., & Clow, G. D., 2023, Permafrost Thermal Responses to Asymmetrical Climate Changes: An Integrated Perspective. Geophysical Research Letters. doi:10.1029/2022GL100327
  28. Wang, L., Zhang, C., Geng, R., Li, Y., Song, J., Wang, B., & Cui, F., 2023, The discrimination of tectonic setting Using trace elements in zirconsA machine learning approach [Preprint], In Review. doi:10.21203/
  29. Wen, Y., Zhang, L., Holbourn, A. E., Zhu, C., Huntington, K. W., Jin, T., Li, Y., & Wang, C., 2023, CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia, Proceedings of the National Academy of Sciences. doi:10.1073/pnas.2214655120
  30. Zhang, J. Z., & Petersen, S. V., 2023, Clumped and oxygen isotope sclerochronology methods tested in the bivalve Lucina pensylvanica, Chemical Geology. doi:10.1016/j.chemgeo.2023.121346
  31. Zhang, R., Cheng, Z., Zhang, Z., Chen, Z., Ernst, R., & Santosh, M., n.d., Formation of Tarim Large Igneous Province and strengthened lithosphere revealed through Machine Learning. Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB025772
  32. Zhao, K., Xu, X., Bachmann, O., Nan, T., & Xia, Y., 2023, H2O-Controlled Eruptive Filtering on the Bimodality of Continental Volcanism across Tectonic Settings, Journal of Petrology. doi:10.1093/petrology/egad006

EarthChem: 2022

  1. Agterhuis, T., Ziegler, M., de Winter, N.J. et al., 2022, Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry. Commun Earth Environ, doi:10.1038/s43247-022-00350-8
  2. Aiuppa, A., Allard, P., Bernard, B., et al., 2022, Gas leakage from shallow ponding magma and trapdoor faulting at Sierra Negra volcano (Isabela Island, Galapagos), G Cubed, doi:10.1029/2021GC010288
  3. Aiuppa, A., Bitetto, M., Calabrese, S., Delle Donne, D., Lages, J., La Monica, F. P., Chiodini, G., Tamburello, G., Cotterill, A., Fulignati, P., Gioncada, A., Liu, E. J., Moretti, R., & Pistolesi, M., 2022, Mafic magma feeds degassing unrest at Vulcano Island, Italy. Communications Earth & Environment. doi: 10.1038/s43247-022-00589-1
  4. Amann, B., Bertrand, S., Alvarez-Garreton, C., Reid, B., 2022, Seasonal variations in fjord sediment grain size: A pre-requisite for hydrological and climate reconstructions in partially glacierized watersheds (Baker River, Patagonia), JGR. doi:10.1029/2021JF006391
  5. Andrews, B. J., Costa, F., Venzke, E., & Widiwijayanti, C., 2022, Databases in Volcanology, Bulletin of Volcanology, doi:10.1007/s00445-022-01597-x
  6. Audhkhasi, P., & Singh, S. C., 2022, Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean. Science Advances, 8(24). doi:10.1126/sciadv.abn5404
  7. Barnes, S-J., Mansur, E., 2022, Distribution of Te, As, Bi, Sb, and Se in Mid-Ocean Ridge Basalt and Komatiites and in Picrites and Basalts from Large Igneous Provinces: Implications for the Formation of Magmatic Ni-Cu-Platinum Group Element Deposits. Economic Geology. doi:10.5382/econgeo.4887
  8. Bachmann, O., Malone, S., Vidale, J., Bergantz, G., Creager, K., Booker, J., Sisson, T., Pallister, J., Moran, S., Denliger, R., Levander, A., Brown, J., Beroza, G., DeCelles, P., Kapp, P., Beck, S., Derry, L., Schopka, H., Dick, H., … Kirby, S., (n.d.), List of White Papers, alphabetical by surname of first author. 
  9. Becker, K., Davis, E. E., & Villinger, H., (n.d.), Long-Term Observations of Subseafloor Temperatures and Pressures in a Low-Temperature, Off-axis Hydrothermal System in North Pond on the Western Flank of the Mid-Atlantic Ridge, Geochemistry, Geophysics, Geosystems. doi:10.1029/2022GC010496
  10. Brehm, S. K., & Lange, R. A., 2022, Origin of low Mg# hawaiites carrying peridotite xenoliths from the Cima volcanic field, California, USA: Evidence of rapid magma mixing during ascent along intersecting fractures. GSA Bulletin. doi:10.1130/B36390.1
  11. Boone, S., Dalton, H., Prent A., et al., 2022, AusGeochem: An Open Platform for Geochemical Data Preservation, Dissemination and Synthesis, Geostandards and Geoanalytical Research, doi:10.1111/ggr.12419
  12. Boulahanis, B., Carbotte, S. M., Canales, J. P., Han, S., & Nedimović, M. R., 2022, Structure and evolution of northern Juan de Fuca crust and uppermost mantle over the last 8 Ma from an active-source seismic tomography study. Journal of Geophysical Research: Solid Earth. doi:10.1029/2022JB023987
  13. Brugman, K., Till, C. B., & Bose, M., 2022, Common assumptions and methods yield overestimated diffusive timescales, as exemplified in a Yellowstone post-caldera lava. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-022-01926-5
  14. Casetta, F.,Rizzo, A., Faccini, B., Ntaflos, T., Abart, R., Lanzafame, G., Faccincani, L., Mancini, L., Giacomoni,P., Coltorti,M., 2022, CO2 storage in the Antarctica Sub-Continental Lithospheric Mantle as revealed by intra- and inter-granular fluids, Lithos. doi:10.1016/j.lithos.2022.106643
  15. Chapman, T., Milan, A., Metcalf, I., Blevin, P., Crowley, J., 2022, Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction, Nature Geoscience. doi:10.1038/s41561-022-00934-1
  16. Chen, G., Cheng, Q., Lyons, T. W., Shen, J., Agterberg, F., Huang, N., & Zhao, M., 2022, Reconstructing Earth’s atmospheric oxygenation history using machine learning, Nature Communications. doi: 10.1038/s41467-022-33388-5
  17. Chen, S., 2022, A Journey from Partition Coefficients in Melt Inclusions of Lunar Samples to the Prediction of Vibrational Modes Under High P/T Conditions and the Thermodynamics of Sulfide-mediated Redox Reactions in Sediments, Thesis.  doi:10.7302/6282
  18. Chen, Q., Liu, H., Johnson, T., Hartnady, M., Kirkland, C. L., Lu, Y., & Sun, W., 2022, Intraplate continental basalts over the past billion years track cooling of the mantle and the onset of modern plate tectonics, Earth and Planetary Science Letters. doi:10.1016/j.epsl.2022.117804
  19. Chen, S., Ni, P., Zhang, Y., & Gagnon, J., 2022, Trace element partitioning between olivine and melt in lunar basalts. American Mineralogist, doi: 10.2138/am-2022-7971
  20. Choo, S., Dellwig, O., Wäge-Recchioni, J., & Schulz-Vogt, H., 2022, Microbial-driven impact on aquatic phosphate fluxes in a coastal peatland, Marine Ecology Progress Series. doi: 10.3354/meps14210
  21. Cipar, J. H., 2022, Thermal evolution of the Rio Grande Rift and Basin and Range Lithosphere: A petrochronologic investigation, [Pennsylvania State University]. 
  22. Cisneros-Lazaro, D., Adams, A., Guo, J. et al. ,2022, Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent. Nat Commun. doi:10.1038/s41467-021-27782-8
  23. Claxton, L. M., McClelland, H. L. O., Hermoso, M., & Rickaby, R. E. M., 2022, Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2. Nature Geoscience, 1–6. doi: 10.1038/s41561-022-01006-0
  24. Clemens, J. D., Bryan, S. E., Mayne, M. J., Stevens, G., & Petford, N., 2022, How are silicic volcanic and plutonic systems related? Part 1: A review of geological and geophysical observations, and insights from igneous rock chemistry, Earth-Science Reviews doi:10.1016/j.earscirev.2022.104249
  25. Clemens, J. D., Bryan, S. E., Stevens, G., Mayne, M. J., & Petford, N., 2022, How are silicic volcanic and plutonic systems related? Part 2: Insights from phase-equilibria, thermodynamic modelling and textural evidence, Earth-Science Reviews. doi:10.1016/j.earscirev.2022.104250
  26. DiMaggio, E., Mana, S., and VanHazinga, C., 2022, EARThD: an effort to make East African tephra geochemical data available and accessible, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13330, doi: 10.5194/egusphere-egu22-13330
  27. Doucet, L., Gamaleldien,H., Li,Z-X., 2022, Pitfalls in using the geochronological information from the EarthChem Portal for Precambrian time-series analysis,Precambrian Research, doi: 10.1016/j.precamres.2021.106514
  28. Doucet, L. S., Tetley, M. G., Li, Z.-X., Liu, Y., & Gamaleldien, H., 2022, Geochemical fingerprinting of continental and oceanic basalts: A machine learning approach, Earth-Science Reviews. doi: 10.1016/j.earscirev.2022.104192
  29. Elger, K., ter Maat, G., Caldeira, R., Cimarelli, C., Corbi, F., Dominguez, S., Drury, M., Funiciello, F., Lange, O., Ougier-Simonin, A., Rosenau, M., Wessels, R., Willingshofer, E., & Winkler, A., 2022, The EPOS Multi-Scale Laboratories: A FAIR Framework for stimulating Open Science practice across European Earth Sciences Laboratories. Annals of Geophysics, doi: 10.4401/ag-8790
  30. Famin, V., et al., 2022, Multi-technique Geochronology of Intrusive and Explosive Activity on Piton des Neiges Volcano, R union Island, G-Cubed, doi: 10.1029/2021GC010214
  31. Forshaw, J. B., & Pattison, D. R. M., 2022, Major-element geochemistry of pelites, Geology. doi: 10.1130/G50542.1
  32. Gordeev, E.I., Bergal-Kuvikas, O.V.,2022, Structure of the Subduction Zone and Volcanism in Kamchatka. Dokl. Earth Sc., doi: 10.1134/S1028334X22020088
  33. Grassa, F., Viveiros, F., Mckormick-Kilbride, B., Bonifaci, M., Ilynskaya, E., Iribarren, I., Luengo, N., Moreno, L., Manson, E., Moune, S., Pfeffer, M. A., Silva, C., Burton, M., Caliro, S., Muro, A. di, Esse, B., Labazuy, P., Liotta, M., Liuzzo, M., Moretti, R., Murphy, A., Salerno, G., Torres, P., Varna, A., Cacciola, L., Messina, G., n.d., Programme: H2020 Project number: 731070 EUROVOLC European Network of Observatories and Research Infrastructure for Volcanology Deliverable Report D5.3: EPOS geochemical database participation: Integration of geochemical dataset of volcanic gases in atmosphere not implemented in EPOS-IP.
  34. Gill, J., Todd, E., Hoernle, K., Hauff, F., Price, A. A., & Jackson, M. G., n.d., Breaking Up is Hard to Do: Magmatism During Oceanic Arc Breakup, Subduction Reversal, and Cessation, Geochemistry, Geophysics, Geosystems. doi: 10.1029/2022GC010663
  35. Giovannelli, D., 2022, Geosphere and Biosphere coevolution: The role of trace metals availability in the evolution of biogeochemistry.
  36. Gray, K., Foster,D., Johnson, K., Isakson, V., 2022, Rotational tectonics of the Oregon–Idaho–Montana Cordillera, Tectonophysics, doi:10.1016/j.tecto.2022.229293
  37. Grenier, M., Brown, K.A., Colombo, M., Belhadj, M., Baconnais, I., Pham, V., Soon, M., Myers, P.G., Jeandel, C., François, R., 2022, Controlling factors and impacts of river-borne neodymium isotope signatures and rare earth element concentrations supplied to the Canadian Arctic Archipelago, Earth and Planetary Science Letters, dot: 10.1016/j.epsl.2021.117341
  38. Grondahl, C., & Zajacz, Z., 2022, Sulfur and chlorine budgets control the ore fertility of arc magmas. Nature Communications, doi: 10.1038/s41467-022-31894-0
  39. Gu, Y., Wang, M., Zhang, Q., Ge, L., Xu, L., Lu, H., 2022, Accurate-parametric SAR-TL dating protocols for older sediments using quartz, Applied Radiation and Isotopes, doi: 10.1016/j.apradiso.2021.110072
  40. Guns, K. A., Bennett, R., Blisniuk, K., Walker, A., Hidy, A., & Heimsath, A., n.d., Steady Long-term Slip Rate on the Blue Cut Fault: Implications for Strain Transfer between the San Andreas Fault and Eastern California Shear Zone. Geophysical Research Letters, doi:10.1029/2022GL100799
  41. Halldórsson, S. A., Marshall, E. W., Caracciolo, A., Matthews, S., Bali, E., Rasmussen, M. B., Ranta, E., Robin, J. G., Guðfinnsson, G. H., Sigmarsson, O., Maclennan, J., Jackson, M. G., Whitehouse, M. J., Jeon, H., van der Meer, Q. H. A., Mibei, G. K., Kalliokoski, M. H., Repczynska, M. M., Rúnarsdóttir, R. H., Sigurðsson, G., Pfeffer, M. A., Scott, S. W., Kjartansdóttir, R., Kleine, B. I., Oppenheimer, C., Aiuppa, A., Ilyinskaya, E., Bittet, M., Giudice, G., Stefánsson, A., 2022, Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland, Nature. doi: 10.1038/s41586-022-04981-x
  42. Harmon, N. M., 2022, First-row Transition Element Distribution Across the Blueschist-Eclogite Transition: A Case Study From New Caledonia, Electronic Theses and Dissertations.
  43. Haproff, P. J., Levy, D. A., Zuza, A. V., Hooker, J. D., Heizler, M. T., Stockli, D. F., & Braza, M., 2022, Cenozoic kinematic histories of the Tidding and Lohit thrusts in the northern Indo-Burma Ranges: Implications for crustal thickening and exhumation of Gangdese lower arc crust along the Indus-Yarlung suture zone. GSA Bulletin. doi:10.1130/B36323.1
  44. Hazen, R. M., Morrison, S. M., Krivovichev, S. V., & Downs, R. T., 2022, Lumping and splitting: Toward a classification of mineral natural kinds. American Mineralogist, doi: 10.2138/am-2022-8105
  45. He, Y., Zhou, Y., Wen, T., Zhang, S., Huang, F., Zou, X., Ma, X., Zhu, Y., 2022, A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications, Applied Geochemistry, doi:10.1016/j.apgeochem.2022.105273
  46. Helmick, M., 2022, Investigation of Cryptotephra in Polar Ice Cores, Electronic Theses and Dissertations.
  47. Hofmann, A. W., Class, C., & Goldstein, S. L., (n.d.), Size and composition of the MORB+OIB mantle reservoir. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2022GC010339
  48. Hopley, P., Cerling, T., Crété, L., Werdelin, L., Mwebi, O., Manthi, F., Leakey, L., 2022, Stable isotope analysis of carnivores from the Turkana Basin, Kenya: Evidence for temporally-mixed fossil assemblages, Quaternary International, doi: 10.1016/j.quaint.2022.04.004
  49. Hoyer, P.A., Haase, K.M., Regelous, M. et al., 2022, Mantle plume and rift-related volcanism during the evolution of the Rio Grande Rise, Commun Earth Environ.,  doi:10.1038/s43247-022-00349-1
  50. Jackson, M. G., & Macdonald, F. A., 2022, Hemispheric Geochemical Dichotomy of the Mantle Is a Legacy of Austral Supercontinent Assembly and Onset of Deep Continental Crust Subduction, AGU Advances, doi: 10.1029/2022AV000664
  51. Johnson, T. E., Kirkland, C. L., Lu, Y., Smithies, R. H., Brown, M., & Hartnady, M. I. H., 2022, Giant impacts and the origin and evolution of continents. Nature, doi: 10.1038/s41586-022-04956-y
  52. Katz, S. A., Levin, N. E., Rodbell, D. T., Gillikin, D. P., Aron, P. G., Passey, B. H., Tapia, P. M., Serrepe, A. R., & Abbott, M. B, 2023, Detecting hydrologic distinctions among Andean lakes using clumped and triple oxygen isotopes, Earth and Planetary Science Letters. doi: 10.1016/j.epsl.2022.117927
  53. Keefer, D. A., & Blake, C., 2022, Human-Driven Models: A Case Study of Geologists as They Engage with Data for Decision Making, Proceedings of the Association for Information Science and Technology, doi:10.1002/pra2.649
  54. Kelson, J., Petersen, S., Niemi, N., Passey, B., Curley, A., 2022, Looking upstream with clumped and triple oxygen isotopes of estuarine oyster shells in the early Eocene of California, USA. Geology, doi: 10.1130/G49634.1
  55. Kern, C., Aiuppa, A. & de Moor, J.M. ,2022,A golden era for volcanic gas geochemistry?. Bull Volcanol 84, 43 (2022). doi: 10.1007/s00445-022-01556-6
  56. Kis, B. M., Szalay, R., Aiuppa, A., Bitetto, M., Palcsu, L., & Harangi, S., 2022, Compositional measurement of gas emissions in the Eastern Carpathians (Romania) using the Multi-GAS instrument: Approach for in situ data gathering at non-volcanic areas, Journal of Geochemical Exploration, doi: 10.1016/j.gexplo.2022.107051
  57. Klöcking, M., Wyborn, L., Lehnert, K., Ware, B., Prent, A. M., Profeta, L., Kohlmann, F., Noble, W., Bruno, I., Lambart, S., Ananuer, H., Barber, N. D., Becker, H., Brodbeck, M., Deng, H., Deng, K., Elger, K., Franco, G. de S., Gao, Y., Ghasera, K. M., Hezel, D. C., Huang, J., Kerswell, B., Koch, H., Lanai, A. W., Matt, G., Martínez-Villegas, N., Yobo, L. N., Redaa, A., Schäfer, W., Swing, M. R., Taykore, R. J. M., Traun, M. K., Whelan, J., Zhou, T., 2022, Community recommendations for geochemical data, services and analytical capabilities in the 21st century. doi:10.31223/X5H07Q
  58. Koffman, B. G., Saylor, P., Zhong, R., Sethares, L., Yoder, M. F., Hanschka, L., Methven, T., Cai, Y., Bolge, L., Longman, J., Goldstein, S. L., & Osterberg, E. C., 2022, Provenance of Anthropogenic Pb and Atmospheric Dust to Northwestern North America, Environmental Science & Technology. doi: 10.1021/acs.est.2c03767
  59. Kopp, M., Kaye, J., Smeglin, Y. H., Adams, T., Primka, E. J., Bradley, B., Shi, Y., & Eissenstat, D., 2022, Topography Mediates the Response of Soil CO2 Efflux to Precipitation Over Days, Seasons, and Years, Ecosystems. doi: 10.1007/s10021-022-00786-1
  60. Kurek, M. R., Stubbins, A., Drake, T. W., Moura, J. M. S., Holmes, R. M., Osterholz, H., Six, J., Wabakanghanzi, J. N., Dinga, B., Mitsuya, M., Spencer, R.G.M., 2022, Organic Molecular Signatures of the Congo River and Comparison to the Amazon, Global Biogeochemical Cycles. doi: 10.1029/2022GB007301
  61. Lang, O. I., & Lambart, S., 2022, First-row transition elements in pyroxenites and peridotites: A promising tool for constraining the mantle source mineralogy, Chemical Geology. doi: 10.1016/j.chemgeo.2022.121137
  62. Lefeuvre, N., Truche, L., Donzé, F.-V., Gal, F., Tremosa, J., Fakoury, R.-A., Calassou, S., & Gaucher, E. C., 2022, Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study. Applied Geochemistry, doi: 10.1016/j.apgeochem.2022.105396
  63. Leicher, N., Giaccio, B., Pereira, A., Nomade, S., Monaco, L., Mannella, G., Galli, P., Peronance, E., Palladino, D. M., Sottili, G., Zanchetta, G., & Wagner, B., n.d., Central Mediterranean tephrochronology between 313 and 366 ka: New insights from the Fucino palaeolake sediment succession, Boreas, doi: 10.1111/bor.12610
  64. Li, S., Zhang, M., Yuan, F., Li, X., Wang, C., Long, J., & Jiao, J., 2022, Isotope spatiotemporal analysis and prospecting indication based on GIS in Tibet. Ore Geology Reviews, doi:10.1016/j.oregeorev.2022.104997
  65. Licht, A., Kelson, J., Bergel, S., Schauer, A., Petersen, S. v., Capirala, A., Huntington, K. w, Dupont-Nivet, G., Win, Z., & Aung, D. W., n.d., Dynamics of pedogenic carbonate growth in the tropical domain of Myanmar. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2021GC009929
  66. Linzmeier, B. J., Jacobson, A. D., Sageman, B. B., Hurtgen, M. T., Ankney, M. E., Masterson, A. L., & Landman, N. H., 2022, Isotope systematics of subfossil, historical, and modern Nautilus macromphalus from New Caledonia, PLOS ONE. doi:10.1371/journal.pone.0277666
  67. Lowe, D. J., Abbott, P. M., Suzuki, T., & Jensen, B. J. L., 2022, Global tephra studies: Role and importance of the international tephra research group “Commission on Tephrochronology” in its first 60 years. History of Geo- and Space Sciences, doi: 10.5194/hgss-13-93-2022
  68. Lü, Q.-Q., Chen, Y.-X., Henderson, J., & Bayon, G., 2023, A large-scale Sr and Nd isotope baseline for archaeological provenance in Silk Road regions and its application to plant-ash glass. Journal of Archaeological Science, doi:10.1016/j.jas.2022.105695
  69. Ma, C., Morrison, S. M., Muscente, A. D., Wang, C., & Ma, X., n.d., Incorporate temporal topology in a deep-time knowledge base to facilitate data-driven discovery in geoscience, Geoscience Data Journal, doi: 10.1002/gdj3.171
  70. Ma, C., Tang, Y., Foley, S. F., Ye, C., Ying, J., Zhao, X., Xiao, Y., & Zhang, H., n.d., Phosphorus Variations in Volcanic Sequences Reveal the Linkage between Regional Tectonics and Terrestrial Biota Evolution. Geochemistry, Geophysics, Geosystems, doi:10.1029/2022GC010536
  71. Ma, C., Tang, Y., Ye, C., Ying, J., & Zhang, H., 2022, Mechanisms for phosphorus fluctuation in Phanerozoic volcanic rocks., Lithos. doi: 10.1016/j.lithos.2022.106764
  72. Ma, C., Tang, Y., & Ying, J., 2022, Volcanic phosphorus spikes associated with supercontinent assembly supported the evolution of land plants. Earth-Science Reviews, doi: 10.1016/j.earscirev.2022.104101
  73. Ma, C., Tang, Y., & Ying, J., 2022, Global tectonics and oxygenation events drove the Earth-scale phosphorus cycle, Earth-Science Reviews, doi: 10.1016/j.earscirev.2022.104166
  74. Maltese, A., Caro, G., Pandey, O.P. et al., 2020, Direct evidence for crust-mantle differentiation in the late Hadean. Commun Earth Environ, doi: 10.1038/s43247-022-00341-9
  75. Martin, E. L., Barrote, V. R., & Cawood, P. A., 2022, A resource for automated search and collation of geochemical datasets from journal supplements, Scientific Data. doi:10.1038/s41597-022-01730-7
  76. Mastroianni, F., Braschi, E., Casalini, M., Agostini, S., Di Salvo, S., Vougioukalakis, G., Francalanci, L., 2022, Data on unveiling the occurrence of transient, multi-contaminated mafic magmas inside a rhyolitic reservoir feeding an explosive eruption (Nisyros, Greece),Data in Brief, doi:10.1016/j.dib.2022.108077
  77. Moghadam, H., Hoernle, K., Hauff,F. , Garbe-Schönberg,D. , Pfänder,J.A., 2022,
    Geochemistry and petrogenesis of alkaline rear-arc magmatism in NW Iran, Lithos, doi: 10.1016/j.lithos.2021.106590
  78. Mougel, B., Agranier, A., Gente, P., & Hemond, C., 2022, 320,000 years of interaction between a fast-spreading ridge and nearby seamounts monitored using major, trace and isotope composition data from oceanic basalts: Zoom at 15.6°N on the East Pacific Rise, Data in Brief, doi: 10.1016/j.dib.2022.108550
  79. Munroe, J. S., 2022, Relation between regional drought and mountain dust deposition revealed by a 10-year record from an alpine critical zone. Science of The Total Environment, doi: 10.1016/j.scitotenv.2022.156999
  80. Nicoli, G., Borghini, A., & Ferrero, S., 2022, The carbon budget of crustal reworking during continental collision: Clues from nanorocks and fluid inclusions, Chemical Geology, doi: 10.1016/j.chemgeo.2022.121025
  81. Nikitczuk, M. P., Bebout, G. E., Geiger, C. A., Ota, T., Kunihiro, T., Mustard, J. F., Halldórsson, S. A., & Nakamura, E. (2022). Nitrogen Incorporation in Potassic and Micro- and Meso-Porous Minerals: Potential Biogeochemical Records and Targets for Mars Sampling. Astrobiology. doi: 10.1089/ast.2021.0158
  82. Qi, Y., Wang, Q., Wei, G.-J., Li, J., & Wyman, D. A., 2022, Magnesium and Calcium Isotopic Geochemistry of Silica-Undersaturated Alkaline Basalts: Applications for Tracing Recycled Carbon, Geochemistry, Geophysics, Geosystems. doi: 10.1029/2022GC010463
  83. Quesnel, B., Jautzy, J., Scheffer, C., Raymond, G., Beaudoin, G., Jørgensen, T. R. C., & Pinet, N., 2022, Clumped isotope geothermometry in Archean mesothermal hydrothermal systems (Augmitto-Bouzan orogenic gold deposit, Abitibi, Québec, Canada): A note of caution and a look forward, Chemical Geology. doi: 10.1016/j.chemgeo.2022.121099
  84. Phelps, P. R., 2022, Micro to macro: Investigating magmatic processes from crystals to satellites [Thesis, Rice University].
  85. Phillips, S., Littler, K., 2022, Comparison of sediment composition by smear slides to quantitative shipboard data: a case study on the utility of smear slide percent estimates, IODP Expedition 353, northern Indian Ocean, Sci. Dril., doi:10.5194/sd-30-59-2022
  86. Ramirez Salazar, A., 2022, The metamorphic evolution of the Isua supracrustal belt: Implications for Archean tectonics [Phd, University of Leeds].
  87. Raimbourgh, H., Famin, V., Canizares, A., Le Trong, E., 2022, Fluid pressure changes recorded by trace elements in quartz, G-Cubed, doi: 10.1029/2022GC010346
  88. Rasmussen, D., Plank, T., Roman, D., Zimmer, M., 2022, Magmatic water content controls the pre-eruptive depth of arc magmas, Science, doi:10.1126/science.abm5174
  89. Reubi, O., Müntener, O., 2022, Making andesites and the continental crust: Mind the step when wet, Journal of Petrology, doi: 10.1093/petrology/egac044
  90. Rooyakkers, S. M., Faure, K., Chambefort, I., Barker, S. J., Elms, H. C., Wilson, C. J. N., & Charlier, B. L. A., n.d., Tracking magma-crust-fluid interactions at high temporal resolution: Oxygen isotopes in young silicic magmas of the Taupō Volcanic Zone, Geochemistry, Geophysics, Geosystems. doi:10.1029/2022GC010694
  91. Ryb, U., Erel, Y., Matthews, A., Avni, Y., & Stern, D., n.d., Sources, timing, environmental and tectonic implications of epigenetic mineralization along the Arabian-African plate boundary. Geochemistry, Geophysics, Geosystems. doi:10.1029/2022GC010549
  92. Sammon, L. G., 2022, Earth’s Radiogenic Heat Production and the Composition of the Deep Continental Crust. doi: 10.13016/3rn6-wgpy
  93. Schwab, M. S., Gies, H., Freymond, C. V., Lupker, M., Haghipour, N., & Eglinton, T. I., 2022, Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: Insights from a time-series, Biogeochemistry: Organic Biogeochemistry. doi: 10.5194/egusphere-2022-705
  94. Sehsah, H., Furnes, H., Pham, L. T., & Eldosouky, A. M., 2022, Plume–MOR decoupling and the timing of India–Eurasia collision. Scientific Reports, doi: 10.1038/s41598-022-16981-y
  95. Shaughnessy, A, 2022, Weathering Dynamics in Watersheds: Connecting River Chemistry to Subsurface Mineral Distributions [Pennsylvania State University].
  96. Shinevar, W. J., Jagoutz, O., & Behn, M. D., n.d., WISTFUL: Whole-rock Interpretative Seismic Toolbox for Ultramafic Lithologies. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2022GC010329
  97. Smith, M. E., Moore, E. W., & Swart, P. K., 2022, Constraining diagenesis within shallow water carbonate environments: Insights from clumped and sulfur isotopes, Chemical Geology, doi:10.1016/j.chemgeo.2022.121183
  98. Simonella, L. E., Cosentino, N. J., Montes, M. L., Croot, P. L., Palomeque, M. E., & Gaiero, D. M., 2022, Low source-inherited iron solubility limits fertilization potential of South American dust. Geochimica et Cosmochimica Acta, doi: 10.1016/j.gca.2022.06.032
  99. Small, Marie, 2022, Establishing the mantle sources of post glacial Icelandic basalts using trace element analysis [The Open University]. doi: 10.21954/OU.RO.00015119
  100. Smith, M., Swart, P., 2022, The influence of diagenesis on carbon and oxygen isotope values in shallow water carbonates from the Atlantic and Pacific: Implications for the interpretation of the global carbon cycle,Sedimentary Geology, doi: 10.1016/j.sedgeo.2022.106147
  101. Song, Y., Tian, Y., Yu, J., Algeo, T. J., Luo, G., Chu, D., & Xie, S., 2022, Wildfire response to rapid climate change during the Permian-Triassic biotic crisis, Global and Planetary Change. doi: 10.1016/j.gloplacha.2022.103872
  102. Steiner, A.,  Hickey, K. , Huntington, K., Schauer; A.,  2022, "Roll-Front” Mass Transfer of Carbonate Cations in Carlin-Type Gold Deposits: Insights from UV-Fluorescent Calcite Veins. Economic Geology, doi: 10.5382/econgeo.4908
  103. Sun, Y., Gao, R., Li, Z., Wang, A., Han, R., Xi, Y., & Liu, J., 2022, Composition and Evolution of Continental Crust at Orogenic Belts: Constraints From a 3-D Crustal Model of Southeast China, Journal of Geophysical Research: Solid Earth. doi: 10.1029/2022JB025057
  104. Tortelli, G., Gioncada, A., Pagli, C., Braschi, E., Gebru, E. F., & Keir, D., n.d., Constraints on the magma source and rift evolution from geochemistry of the Stratoid flood basalts (Afar, Ethiopia). Geochemistry, Geophysics, Geosystems, doi: 10.1029/2022GC010434
  105. Urann, B.M., Le Roux, V., Jagoutz, O. et al. , 2022,High water content of arc magmas recorded in cumulates from subduction zone lower crust. Nat. Geosci. doi: 10.1038/s41561-022-00947-w
  106. Valbi, V., Perez, A., Verney-Carron, A., Boutillez, C., Ranchoux, A., Fourdrin, C., Rossano, S., 2022, Impact of biogenic exudates on the dissolution and browning of stained glass windows, International Biodeterioration & Biodegradation, doi: 10.1016/j.ibiod.2022.105442
  107. van Zalinge, M. E., Mark, D. F., Sparks, R. S. J., Tremblay, M. M., Keller, C. B., Cooper, F. J., & Rust, A., 2022, Timescales for pluton growth, magma-chamber formation and super-eruptions, Nature, doi:10.1038/s41586-022-04921-9
  108. Vaughn, D. R., Kellerman, A. M., Wickland, K. P., Striegl, R. G., Podgorski, D. C., Hawkings, J. R., Nienhuis, J. H., Dornblaser, M. M., Stets, E. G., & Spencer, R. G. M., 2022, Bioavailability of Dissolved Organic Matter Varies with Anthropogenic Landcover in the Upper Mississippi River Basin. Water Research, doi: 10.1016/j.watres.2022.119357
  109. Wallace, K. L., Bursik, M. I., Kuehn, S., Kurbatov, A. V., Abbott, P., Bonadonna, C., Cashman, K., Davies, S. M., Jensen, B., Lane, C., Plunkett, G., Smith, V. C., Tomlinson, E., Thordarsson, T., & Walker, J. D., 2022, Community established best practice recommendations for tephra studies—From collection through analysis, Scientific Data, doi: 10.1038/s41597-022-01515-y
  110. Wagner, B., Tauber, P., Francke, A., Leicher, N., Binnie, S. A., Cvetkoska, A., Jovanovska, E., Just, J., Lacey, J. H., Levkov, Z., Lindhorst, K., Kouli, K., Krastel, S., Pana-giotopoulos, K., Ulfers, A., Zaova, D., Donders, T. H., Grazhdani, A., Koutsodendris, A., Leng, M.J., Sadori, L., Scheinert, M., Vogel, H., Wonik, T., Zanchetta, G., & Wilke, T. (n.d.). The geodynamic and limnological evolution of Balkan Lake Ohrid, possibly the oldest extant lake in Europe. Boreas.
  111. Weber, C. J., & Bigalke, M., 2022, Opening Space for Plastics—Why Spatial, Soil and Land Use Data Are Important to Understand Global Soil (Micro)Plastic Pollution. Microplastics. doi: 10.3390/microplastics1040042
  112. Werner, C., Schipper, C. I., Cronin, S. j., Barry, P. H., & Stewart, M. K., n.d., Magmatic carbon and helium in springs reveals the vitality of a dormant volcano, Taranaki, New Zealand, Geophysical Research Letters. doi: 10.1029/2022GL099273
  113. Winslow, H., Ruprecht, P., Gonnermann, H., Phelps, P., Mu oz-Saez, C., Delgado, F, Pritchard, M., Amigo, A., 2022, Insights for crystal mush storage utilizing mafic enclaves from the 2011-12 Cordon Caulle eruption, Research Square, doi:10.21203/
  114. Wrobel-Daveau, J.-C., Nicoll, G., Tetley, M. G., Gréselle, B., Perez-Diaz, L., Davies, A., & Eglington, B. M., 2022, Plate tectonic modelling and energy transition, Earth-Science Reviews. doi: 10.1016/j.earscirev.2022.104227
  115. Wu, Y., Pena, L. D., Anderson, R. F., Hartman, A. E., Bolge, L. L., Basak, C., Kim, J., Rijkenberg, M. J. A., de Baar, H. J. W., & Goldstein, S. L., 2022, Assessing neodymium isotopes as an ocean circulation tracer in the Southwest Atlantic. Earth and Planetary Science Letters. doi: 10.1016/j.epsl.2022.117846
  116. Wu, G., Zhu, J.-M., Wang, X., Johnson, T. M., He, Y., Huang, F., Wang, L.-X., & Lai, S.-C. (2022). Nickel isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta.
  117. Wu, M., Richard, S. M., Verhey, C., Castro, L. J., Cecconi, B., & Juty, N., 2022, An analysis of crosswalks from research data schemas to, Data Intelligence. doi: 10.1162/dint_a_00186
  118. Wu, X., Han, X., Wang, Y., Garbe-Schönberg, D., Schmidt, M., Zhang, Z., Qiu, Z., Zong, T., Zhou, P., Yu, X., Liu, J., & Luo, H., 2022, Geochemistry of vent fluids from the Daxi Vent Field, Carlsberg Ridge, Indian Ocean: Constraints on subseafloor processes beneath a non-transform offset, Marine Geology. doi:10.1016/j.margeo.2022.106955
  119. Xu, C., Gréaux, S., Inoue, T., Noda, M., Gao, J., & Li, Y., 2022, Sound velocities of superhydrous phase B up to 21 GPa and 900 K. Geophysical Research Letters doi: 10.1029/2022GL098674
  120. Ye, Shan, (n.d.), A Quantitative Investigation of Large Geoscientific Datasets: How Records of Geochronology and Macroevolution Are Distorted by Paleoclimate, Paleoenvironment, and Sediment Preservation - ProQuest, Retrieved September 9, 2022, from
  121. Yu, X., Liu, Z., Wu, J., An, Y.-J., & Shi, J. (2022). Iron isotopic variations in basalts from oceanic crust due to low-temperature seawater alteration. Marine Geology. doi:10.1016/j.margeo.2022.106949
  122. Zambito, J. J., Haas, L. D., & Parsen, M. J., 2022, A portable x-ray fluorescence (pXRF) elemental dataset collected from Cambrian-age sandstone aquifer material, Wisconsin, U.S.A. Data in Brief. doi: 10.1016/j.dib.2022.108411
  123. Zaremba, N. J., Scholz, C. A., & Moucha, R., 2022, Application of first arrival seismic tomography in a glaciated basin: Implications for paleo-ice stream development, Journal of Glaciology. doi: 10.1017/jog.2022.72
  124. Zhao, K., Xu, X., Klemd, R., He, Z., & Zhang, X., 2022, A review of the genetic mechanisms generating igneous charnockite: CO2 flushing and crystal-melt segregation in mushy reservoirs, Earth-Science Reviews. doi:10.1016/j.earscirev.2022.104295
  125. Zirakparvar, N. A, 2022, Industrial garnet as an unconventional heavy rare earth element resource: Preliminary insights from a literature survey of worldwide garnet trace element concentrations, Ore Geology Reviews, doi: 10.1016/j.oregeorev.2022.105033
  126. Zurkowski, C. C., Yang, J., Chariton, S., Prakapenka, V. B., & Fei, Y., n.d., Synthesis and Stability of an Eight-Coordinated Fe3O4 High-Pressure Phase: Implications for the Mantle Structure of Super-Earths. Journal of Geophysical Research: Planets, doi:10.1029/2022JE007344

Read more

EarthChem: 2021

“Equally important is unlocking data that represent the legacy of several decades of geoscience research, for example, databases comprising a substantial number of data points describing the geochemistry of rocks formed through Earth history, such as EarthChem.”

Kodaira et al., 2021

  1. Adams, J.V., Jackson, M.G., Spera, F.J. et al. Extreme isotopic heterogeneity in Samoan clinopyroxenes constrains sediment recycling.Nat Commun.,doi:10.1038/s41467-021-21416-9
  2. Aidoo, F., Nude, P., Sun, F-Y., Liang, T., Zhang, S-B., 2021, Paleoproterozoic TTG-like metagranites from the Dahomeyide Belt, Ghana: Constraints on the evolution of the Birimian-Eburnean Orogeny, Precambrian Research, doi:10.1016/j.precamres.2020.106024
  3. Aiuppa, A., Casetta, F., Coltorti, M. et al.,2021 Carbon concentration increases with depth of melting in Earth’s upper mantle. Nat. Geosci., doi:10.1038/s41561-021-00797-y
  4. Aiuppa, A., Bitetto, M., Delle Donne, D., La Monica, F., Tamburello, G., Coppola, D., Della Schiava, M., Innocenti, L., Lacanna, G., Laiolo, M., Massimetti, F., Pistolesi, M., Silengo, M., Ripete, M., 2021, Volcanic CO2 tracks the incubation period of basaltic paroxysms, Science Advances, doi: 10.1126/sciadv.abh0191
  5. Antonelli, M.A., Kendrick, J., Yakymchuk, C., Guitreau, M., Mittal, T., Moynier, F., 2012, Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust. Nature Communications,
  6. Attia, S., Paterson, S.R., Saleeby, J., Cao, W., 2021, Detrital zircon provenance and depositional links of Mesozoic Sierra Nevada intra-arc strata:Geosphere, doi: 10.1130/GES02296.1
  7. Avasarala S.,2021, Techniques for Assessing Metal Mobility in the Environment: A Geochemical Perspective. In: Siegel M., Selinus O., Finkelman R. (eds) Practical Applications of Medical Geology. Springer, Cham. doi:10.1007/978-3-030-53893-4_4
  8. Brantley, S., Wen, T., Agarwal, D., Catalano, J., Schroeder, P., Lehnert, K., Varadharajan, C., Pett-Ridge, J., Engle, M., Castronova, A., Hooper, R., Ma, X., Jin, L., McHenry, K., Aronson, E., Shaughnessy, A., Derry, L., Richardson, J., Bales, J., Pierce, E., 2021, The future low-temperature geochemical data-scape as envisioned by the U.S. geochemical community, Computers & Geosciences,doi: 10.1016/j.cageo.2021.104933
  9. Brounce, M., Reagan, M., Kelley, K., Cottrell, E., Shimizu, K., Almeev, R., 2021, Co-variation of slab tracers, volatiles and oxidation during subduction initiation, G-Cubed, dos:10.1029/2021GC009823
  10. Bustamente, E., 2021, Introducing the Water Data Explorer Web Application and Python Library: Uniform Means for Data Discovery and Access from
    CUAHSI and the WMO WHOS Systems, Masters Thesis, Brigham Young University,
  11. Censi, P., Zuddas, P., Caracausi, A., Sortino, F., Cangemi, M., Piazzese, D., et al., 2021, Anomalous behaviour of zirconium and hafnium in volcanic fumarolic fluids. Geophysical Research Letters,doi:10.1029/2021GL094674
  12. Chen, Q., Liu, H., Johnson, T., Hartnady, M., Kirkland, C., Lu, Y., Sun, W-D, 2021, Continental basalts track secular cooling of the
    mantle and the onset of modern plate tectonics, Research Square, doi: 10.21203/
  13. Chen, Q., Liu, H., Li, S-G., Qiu, L., Liao, E-Q., Xie, G-Z., Sun, W-D, 2021, Enhanced deep carbon cycle marked by the upsurge of silica-undersaturated nephelinitic magmatism at the Proterozoic-Phanerozoic boundary, J East Asian Earth Scie, doi: 10.1016/j.jseaes.2021.104772
  14. Chiaradia, M., 2021, Zinc Systematics Quantify Crustal Thickness Control on Fractionating Assemblages of Arc Magmas, Scientific Reports, doi:10.21203/
  15. Chunyin, Z., Greaux, S., Liu, Z., Higo, Y., Arimoto, T., Irifune, T., 2021, Sound velocity of MgSiO3 majorite garnet up to 18 GPa and 2000 K, Geophysical Research Letters, doi: 10.1029/2021GL093499
  16. Clemens, J., Stevens, G., Mayne, M., 2021, Do arc silicic magmas form by fluid-fluxed melting of older arc crust or fractionation of basaltic magmas?, Contrib. Min. Pet., doi: 10.1007/s00410-021-01800-w
  17. Corpas Pastor, G., 2021, Technology Solutions for Interpreters: The VIP
    System, Hermēneus,doi: 10.24197/her.23.2021.91-123
  18. Davis, W., Collins, M., Rooney, T., Brown, E., Stein, C., Stein, S., Moucha, R., 2021, Geochemical, petrographic, and stratigraphic analyses of the Portage Lake Volcanics of the Keweenawan CFBP: implications for the evolution of main stage volcanism in continental flood basalt provinces, Geological Society, London, Special Publications, doi: 10.1144/SP518-2020-221
  19. Dosseto,A., Marwick,B., 2021, UThwigl — An R package for closed- and open-system uranium-thorium dating, Quaternary Geochronology, doi:10.1016/j.quageo.2021.101235
  20. Farrell, U., Samawi, R., Anjanappa, S., Klykov, R., Adeboye, O., et al., 2021, The Sedimentary Geochemistry and Paleoenvironments Project, Geobiology, doi: 10.1111/gbi.12462.hal-03357148
  21. Fecteau, K., Boyd, E., Lindsay, M., Amenabar, M., Robinson, K., Debes, R., Shock, E, 2021,Cyanobacteria and AlgaeMeet at the Limits of their Habitat Ranges in Moderately Acidic Hot Springs, JGR Biogeosciences, doi: 10.1029/2021JG006446
  22. Francke, A., Lacey, J. H.,Marchegiano,M.,Wagner, B., Ariztegui, D., Zanchetta,G., Kusch, S., Ufer, K., Baneschi, I., Knodgen, K., 2021, Last Glacial central Mediterranean hydrology inferred from Lake Trasimeno’s(Italy) calcium carbonate geochemistry, Boreas, doi: 10.1111/bor.12552
  23. Garcia, S., Louvat, P., Gaillardet, J., Nyachoti, S., Ma, L., 2021, Combining Uranium, Boron, and Strontium Isotope Ratios (234U/238U, δ11B, 87Sr/86Sr) to Trace and Quantify Salinity Contributions to Rio Grande River in Southwestern United States, Front. Water., doi: 10.3389/frwa.2020.575216
  24. Gard, M., 2021, Constraints on the thermal state of the continental lithosphere, PhD Thesis, University of Adelaide, 180p.
  25. Gatuingt, L., Rossano, S., Mertz, J-D., Fourdrin, C., Rozenbaum, O., Lemasson, Q., Reguer, S., Trcera, N., Lanson, B., 2021, Characterization and origin of the Mn-rich patinas formed on Lunéville château sandstones, Eur. J. Mineral, doi: 10.5194/ejm-33-687-2021
  26. Gelardi, D., Ainuddin, I., Rippner, D., Patiño, J., Najm, M., Parikh, 2021, Biochar alters hydraulic conductivity and impacts nutrient leaching in two agricultural soils, Soil, doi: 10.5194/soil-7-811-2021
  27. Gill-Olivas, B., Telling, J., Tranter, J., Skidmore, M., Christner, B., O-Doherty, S., Priscu, J., 2021,Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica, Commun Earth Environ 2, doi: 10.1038/s43247-021-00202-x
  28. Goldberg, S., Present, T., Finnegan, S., Bergmann, K., 2021, A high-resolution record of early Paleozoic climate, PNAS, doi: 10.1073/pnas.2013083118
  29. Hopkins, J., Bidmead, J., Lowe, D., Wysoczanski, R., Pillans, B., Ashworth, L., Rees, A., Tuckett, F., 2021, TephraNZ: a major- and trace-element reference dataset for glass-shard analyses from prominent Quaternary rhyolitic tephras in New Zealand and implications for correlation,Geochronology, doi: 10.5194/gchron-3-465-2021
  30. Horton, F., Nielsen, S., Shu, Y., Gagnon, A., Blusztajn, 2020, Thallium isotopes reveal brine activity during carbonatite magmatism, G-Cubed, doi:10.1029/2020GC009472
  31. Ivanochko, T., 2021, Think, Do, and Communicate Environmental Science, Cambridge University Press.
  32. Jiang,D-S., Xu, X-S., Wang, X-J., Zeng, G., Chen, A-X., Huang, B., Huang, F.,2021,Geochemical evidence for the Paleo-Pacific plate subduction at ~125 Ma in Eastern China, Lithos, doi:10.1016/j.lithos.2021.106259
  33. Jicha, B., Hernández, W., 2021, Effusive and explosive eruptive history of the Ilopango caldera complex, El Salvador, Journal of Volcanology and Geothermal Research, doi: 10.1016/j.jvolgeores.2021.107426
  34. Jonnalagadda, M. Benoit, M., Harshe, S., Tillac, R., Duraiswami, R., Grégoire, M., Karmalkar, N., 2021, Geodynamic evolution of the Tethyan lithosphere as recorded in the Spontang Ophiolite, South Ladakh ophiolites (NW Himalaya, India),Geoscience Frontiers, doi: 10.1016/j.gsf.2021.101297
  35. Kim, J., Goldstein, S., Pena, L., Jaume-Seguí, M., Knudson, K, Yehudai, M., Bolge, L., 2021, North Atlantic Deep Water during Pleistocene interglacials and glacials, Quaternary Science Reviews,doi:10.1016/j.quascirev.2021.107146
  36. Kodaira, S., Seton, M., Sonter, L.J. et al.,2021, Reflections on solid Earth research. Nat Rev Earth Environ.,doi: 10.1038/s43017-020-00127-7
  37. Kohli, A., Wolfson-Schwehr, M., Prigent, C. et al. ,2021,Oceanic transform fault seismicity and slip mode influenced by seawater infiltration. Nat. Geosci. 14, 606–611 doi:10.1038/s41561-021-00778-1
  38. Koffman, B., Goldstein, S., Winckler, G., Kaplan, M., Kreutz, K., Bolge, L., Bory, A., Biscaye, P., 2021, Late Holocene dust provenance at Siple Dome, Antarctica, Quaternary Science Reviews, doi: 10.1016/j.quascirev.2021.107271
  39. Krein, S. B.Molitor, Z. J., & Grove, T. L. (2021). ReversePetrogen: A Multiphase dry reverse fractional crystallization-mantle melting thermobarometer applied to 13,589 mid-ocean ridge basalt glassesJournal of Geophysical Research: Solid Earth126, e2020JB021292.
  40. Kurek, M., Stubbins, A., Drake, T., Moura, Jose., Holmes, R., Osterholz, H., Dittmar, T., Peucker-Ehrenbrink, B., Mitsuya, M., Spencer, R., 2021,
    Drivers of organic molecular signatures in the Amazon River, Global Biogeochemical Cycles, doi: 10.1029/2021GB006938
  41. Latham, T., Beck, C., Wegter, B., and Wu, A.: Advancing Data Curation and Archiving: an Application of Coding to Lab Management in the Geosciences, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3595,, 2021.
  42. Leicher, N., Giaccio, B., Zanchetta, G. et al., 20221, Lake Ohrid’s tephrochronological dataset reveals 1.36 Ma of Mediterranean explosive volcanic activity. Sci Data 8, doi:10.1038/s41597-021-01013-7
  43. Li, W., Ge, C., Wang, F., Sun, H., Gu, H., 2021, The spatial distribution characteristics of Nb–Ta of mafic rocks in subduction zones, Open Gesoscience, doi: 10.1515/geo-2020-0242
  44. Liao, X-Y., Liu, L., Zhai, M-G., Liang, S., Yang, W-Q.,Kang, L., Gai, Y-S.,Zhang, C-L., 2021, Metamorphic evolution and Petrogenesis of garnet–corundum silica–undersaturated metapelitic granulites: A new case study from the Mianlüe Tectonic Zone of South Qinling, Central China, Lithos, doi:10.1016/j.lithos.2021.106154
  45. Liu, H., Konhauser,K., Robbins,L., Sun,W-D., 2021,Global continental volcanism controlled the evolution of the oceanic nickel reservoir, EPSL, doi:10.1016/j.epsl.2021.117116
  46. Looser, N., Madritsch, H., Guillong, M., Laurent, O., Wohlwend, S., Bernasconi, S., 2021., Absolute Age and Temperature Constraints on Deformation along the Basal Décollement of the Jura Fold‐and‐thrust Belt from Carbonate U‐Pb Dating and Clumped Isotopes, Tectonics, doi: 10.1029/2020TC006439
  47. Lowe, D., Abbott, P., Suzuki, T., Jensen, B., 2021, The international tephra research group ‘Commission on Tephrochronology’ and its activities- the first 60 years, History of Geo-and Space Sciences, doi: 10.5194/hgss-2021-22
  48. Ma, Q., Zhou, Y., Mu, H., Zhou, T., Zhao, H., Yin, X., Liu, Y. , 2021, Geochemistry of the Laiyang Group from outcrops and Lingke-1 core on Lingshan Island, Shandong Province, Eastern China: Implications for provenance, tectonic setting and palaeo-environment. Geological Magazine, doi:10.1017/S0016756821000819
  49. Ma, X., 2021, Data Science for Geoscience: Recent Progress and Future Trendsfrom the Perspective of aData Life Cycle, eartharxiv, doi:
  50. Marien, C. Drewes-Todd, E., Stork, A., Todd, E., Gill, J., Elis Hoffmann, J., Tani, K., Carsten, A., Münker, C., 2021, Juvenile continental crust evolution in a modern oceanic arc setting: petrogenesis of Cenozoic felsic plutons in Fiji, SW Pacific,Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2021.11.033
  51. Mansur, E., Barnes, S-J., Janasi,V., Henrique-Pinto,r., Alves,A., Sarde Marteleto, N., 2021, The distribution of platinum-group elements and Te, As, Bi, Sb and Se (TABS+) in the Paraná Magmatic Province: Effects of crystal fractionation, sulfide segregation and magma degassing, Lithos, doi:10.1016/j.lithos.2021.106374
  52. Mehra, A., Keller, C., Zhang, T., et al., 2021, Curation and Analysis of Global Sedimentary Geochemical Data to Inform Earth History, GSA Today, doi: 10.1130/GSATG484A.1
  53. Moghadam, H., Li, Q., Griffin, W., Chiaradia, M. , Hoernle, K. , O’Reilly, S., Esmaeili, R., 2021,The Middle-Late Cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman, doi: 10.1130/B36041.1
  54. Munroe, J., Ryan, P., Proctor, A., 2021, Pedogenic clay formation from allochthonous parent materials in a periglacial alpine critical zone, CATENA,doi: 10.1016/j.catena.2021.105324
  55. Murukutla S.A., Koushik S.B., Chinthala S.P.R., Bobbillapati A., Kandaswamy S., 2021,A Simple Agent Based Modeling Tool for Plastic and Debris Tracking in Oceans. In: Dignum F., Corchado J.M., De La Prieta F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection. PAAMS 2021. Lecture Notes in Computer Science, vol 12946. Springer, Cham. doi:10.1007/978-3-030-85739-4_12
  56. Mysen, B., 2021, Structure of chemically complex silicate systemsEncyclopedia of Glass Science, doi:10.1002/9781118801017.ch2.6
  57. Pandey, A., Rao, N., Rahaman, W., Seth, V., Sahoo, S., 2021, Paleoproterozoic metaluminous syenites synchronous with the c. 2.21 Ga mafic dyke swarms from the Eastern Dharwar Craton, India: implications for alkaline magmatism associated with the breakup of supercraton Superia, Geological Society of London,doi:10.1144/SP513-2020-92
  58. Parolari, M., Gómez-Tuena, A., Errázuriz-Henao, C., Cavazos-Tovar, J., 2021
    Orogenic andesites and their link to the continental rock cycle,
    Lithos, doi: 10.1016/j.lithos.2020.105958
  59. Porter, R., Reid, M., 2021, Mapping the Thermal Lithosphere and Melting Across the Continental US, Geophysical Research Letters, doi: 10.1029/2020GL092197
  60. Prabhu, A., Morrison, S., Eleish, A., Zhong, H., Huang, F, et al., 2021, Global earth mineral inventory: A data legacy, Geoscience Data Journal, doi:10.1002/gdj3.106
  61. Quinn, D., Linzmeier, B., Sundell, K., Gehrels, G., Goring, S., Marcott, S., Meyers, S., Peters, S., Ross, J., Schmitz, M., Singer, B., and Williams, J.: Implementing the Sparrow laboratory data system in multiple subdomains of geochronology and geochemistry, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13832, doi:10.5194/egusphere-egu21-13832
  62. Restreppo,G., Wood, W., Graw,J., Phrampus,B., 2021,A machine-learning derived model of seafloor sediment accumulation,
    Marine Geology,doi: 10.1016/j.margeo.2021.106577
  63. Reyes, T., Godfrey, D., Ming, L-J., MacLean, S., Gonzalez, F., Madrigal, L., 2021, The distribution in native populations from Mexico and Central America of the C677T variant in the MTHFR gene, doi:10.1002/ajhb.23567.
  64. Rezeau, H., Klein, B.Z., Jagoutz, O., 2021 Mixing dry and wet magmas in the lower crust of a continental arc: new petrological insights from the Bear Valley Intrusive Suite, southern Sierra Nevada, California. Contrib Mineral Petrol, doi:10.1007/s00410-021-01832-2
  65. Rose-Koga, E., Bouvier, A-S., Gaetani, G., Wallace, P., Allison, C., Andrys, J.,et al., 2021,Silicate melt inclusions in the new millennium: A review of recommended practices for preparation, analysis, and data presentation,Chemical Geology, doi: 10.1016/j.chemgeo.2021.120145
  66. Russell, A., McDermott, F., McGrory, E., Cooper, M., Henry, T., Morrison, L.,2021, As-Co-Ni sulfarsenides in Palaeogene basaltic cone sheets as sources of groundwater arsenic contamination in Co. Louth, Ireland, Applied Geochemistry, doi: 10.1016/j.apgeochem.2021.104914
  67. Salcedo,D., Soto,L., Paduan,J., 2021,Trophic interactions among the macrofauna of the deep-sea hydrothermal vents of Alarcón Rise, Southern Gulf of California, Deep Sea Research Part I: Oceanographic Research Papers,doi: 10.1016/j.dsr.2021.103609
  68. Smeraglia, L., Looser, N., Fabbri, O., Choulet, F., Guillong, M., Bernasconi, S., 2021,U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland, 2021, Solid Earth, doi:10.5194/se-12-2539-2021
  69. Stracke, A., 2021,A process-oriented approach to mantle geochemistry,Chemical Geology, doi:10.1016/j.chemgeo.2021.120350
  70. Su, W., Cai, K., Sun, M. et al., 2021, Carboniferous back-arc extension in the southern Yili-Central Tianshan Block and its significance to the formation of the Kazakhstan Orocline: insights from the Wusun Mountain volcanic belt. Int J Earth Sci (Geol Rundsch), doi:10.1007/s00531-021-02111-y
  71. Suo, Y., Li, S., Cao, X., Liu, Y., Zhu, J., Li, X., Somerville, I., 2021 Mantle micro-block beneath the Indian Ocean and its implications on the continental rift-drift-collision of the Tethyan evolution, Earth-Science Reviews, doi:10.1016/j.earscirev.2021.103622
  72. Thomas, C., Jansen, B., Emile van Loon, E., Weisenberg, G., 2021,Transformation of n-alkanes from plant to soil: a review, doi: 10.5194/soil-2020-107
  73. van Welst, I., Crameri, F., Pusok, A., Glerum, A., Dannberg, J., Thieulot,2021, 101 Geodynamic modelling: How to design, carry out, and interpret numerical studies, EarthArXiv, doi:10.31223/X5ZG66
  74. Wang, D., Wang, XL., 2021, Dual mixing for the formation of Neoproterozoic granitic intrusions within the composite Jiuling batholith, South China. Contrib Mineral Petrol,doi:10.1007/s00410-020-01757-2
  75. Wang, P-I., Gu, X-Y., Kuritani, T., Hanski, E., Xia, Q-K., 2021, Highly variable H2O/Ce ratios in the Hainan mantle plume, Lithos, doi: 10.1016/j.lithos.2021.106516
  76. Wang, Y., Li, C., Li, W. et al. , 2021, Geology and geochemistry of the Tulaergen conduit-style magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China. Miner Deposita, doi: 10.1007/s00126-021-01064-1
  77. Weiss, Y., Kiro, Y., Class, C. et al., 2021, Helium in diamonds unravels over a billion years of craton metasomatism. Nat Commun., doi: 10.1038/s41467-021-22860-3
  78. Wiesner, M., 2021, Carbonate Paleothermometry in Fayetteville Green Lake, New York, Master’s Thesis, Syracuse University.
  79. Xu, Y., Li, C., Tan, H., Cheng, X., 2021, Advances on Surficial Geochemistry Database and Related Research, Geological Journal of China Universities, doi: 10.16108/j.issn1006-7493.2021003
  80. Zamanialavijeh, N., 2021, Kinematics of Frictional Melts at the Base of the World’s Largest Terrestrial Landslide: Markagunt Plateau, Southwest Utah, United States, MS Thesis, University of Louisiana
  81. Zhang,J., Lee,C-T.,  Farner,M., 2021,Using computer-aided image processing to estimate chemical composition of igneous rocks: A potential tool for large-scale compositional mapping,Solid Earth Sciences, dot: 10.1016/j.sesci.2020.12.003
  82. Zheng, Y.F., and Chen, R.X., 2021, Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for super‑continent dynamics: Geosphere,doi:10.1130/GES02334.1
  83. Zheng, Y., Heywood, K.J., Webber, B.G.M. et al. , 2021, Winter seal-based observations reveal glacial meltwater surfacing in the southeastern Amundsen Sea. Commun Earth Environ ., doi: 10.1038/s43247-021-00111-z10

EarthChem: 2020

  1. Anderson, M., Wanless, V., Perfit, M. Conrad, E., Gregg, P., Fornari, D., Ridley, I., 2002, Extreme mantle heterogeneity in mid-ocean ridge mantle revealed in lavas from the 8°20′ N near-axis seamount chain, G-Cubed, doi: 10.1029/2020GC009322
  2. Arribas, A., Mathur, R., Megaw, P, Arribas, I, 2020, The Isotopic Composition of Silver in Ore Minerals,G-Cubde, doi: 10.1029/2020GC009097
  3. Aulbach, S., Massuyeau, M., Garber, J., Gerdes, A., Heamna, L., Viljoen, K., 2020, Ultramafic carbonated melt- and auto-metasomatism in mantle eclogites: Compositional effects and geophysical consequences, G-Cubed, doi:10.1029/2019GC008774
  4. Baglioni M., Manghi P., Mannocci A. (2020) Context-Driven Discoverability of Research Data. In: Hall M., Merčun T., Risse T., Duchateau F. (eds) Digital Libraries for Open Knowledge. TPDL 2020. Lecture Notes in Computer Science, vol 12246. Springer, Cham.doi:10.1007/978-3-030-54956-5_15
  5. Bani, P., Le Glas, E., Kristianto, K., Aiuppa, A., Bitetto, M., Syahbana, D., Elevated CO2 Emissions during Magmatic-Hydrothermal Degassing at Awu Volcano, Sangihe Arc, Indonesia, Geosciences, doi:10.3390/geosciences10110470
  6. Bartley, J., Glazner, A., Stearns, M., Coleman, D., 2020, The Granite Aqueduct and Autometamorphism of Plutons, Goesciences, doi:10.3390/geosciences10040136
  7. Battaglia, A., 2020, New insights of the volcanic gas signature of the Central American Volcanic Arc, PhD Thesis, 192 pp.
  8. Befus, K., Walowski, K., Hervig, R., Cullen, J.,2020, Hydrogen isotope composition of a large silicic magma reservoir preserved in quartz‐hosted glass inclusions of the Bishop Tuff Plinian eruption, doi: 10.1029/2020GC009358
  9. Blackburn, T., Edwards, G.H., Tulaczyk, S. et al.,2020, Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature, doi:10.1038/s41586-020-2484-5
  10. Branhey, J., 2020, Collaborative Research: Network Cluster: Dust in the Critical Zone from the Great Basin to the Rocky Mountains. Utah State University.
  11. Brantley, S.  et al, 2020, A Vision for the Future Low-Temperature Geochemical Data-scape, Gechemical Data Workshop Paper, EarthArXiv.
  12. Brown, M., Kirkland, C., Johnson, T., 2020, Evolution of geodynamics since the Archean: Significant change at the dawn of the Phanerozoic, Geology, doi: 10.1130/G47417.1
  13. Brown, M., Johnson, T., Gardiner, N., 20202, Plate Tectonics and the Archean Earth, Ann Rev Earth Planetary Sci, doi: 10.1146/annurev-earth-081619-052705
  14. Bush, R., Dutton, A., Evans, M., Loft, R., & Schmidt, G. A., 2020, Perspectives on Data Reproducibility and Replicability in Paleoclimate and Climate Science. Harvard Data Science Reviewdoi:10.1162/99608f92.00cd8f85
  15. Carr, P., Norman, M., Bennett,V., Blevin, P., 2020, Tin Enrichment in Magmatic-Hydrothermal Environments Associated with Cassiterite Mineralization at Ardlethan, Eastern Australia: Insights from Rb-Sr and Sm-Nd Isotope Compositions in Tourmaline. Economic Geology doi: 10.5382/econgeo.4774
  16. Cauchick-Miguel, P.,  Moror, S., Rivera, R, Amorim, M., 2020, Data Management Plan in Research: Characteristics and Development, In: Data and Information in Online Environments R. MIgbaini (ed), doi: 10.1007/978-3-030-50072-6
  17. Chen S., Chen, B., 2020, Practices, Challenges and Prospects of Big Data Curation: A Case Study in Geoscience, IJDC, doi:10.22181ijdc.v14i1.669, Icarus, doi: 10.1016/j.icarus.2020.113787
  18. Cone, K., Palin, R., Singha, K., 2020, Unsupervised machine learning with petrological database ApolloBasaltDB reveals complexity in lunar basalt major element oxide and mineral distribution patterns
  19. Cooper, G., Mcpherson, C., Bludcy, J., Maunder, B, Allen, R., Goes, S., Collier, J., Bie, L., Harmon, N., Hicks, S., Iveson, A., Prytulak, J., Rietbrock, A.,Rychert, C., Davidson, J., and the VoiLA team,2020, Variable water input controls evolution of the Lesser Antilles volcanic arc, Nature, doi: 10.1038/s41586-020-2407-5
  20. Cosentino, N., Ruiz-Etcheverry, L., Bia, G., Simonella, L., Coppo, R., Torre, G., Saraceno, M., Tur, V., Gaiero, D.,  2020, Does Satellite Chlorophyll‐a Respond to Southernmost Patagonian Dust? A Multi‐Year, Event‐Based Approach, JGR Biosciences, doi: 10.1029/2020JG006073
  21. Coulthardt, D., Reagan, M., Shimizu, K., Bindeman, I., Brounce, M., Almeev, R., Ryan, J., Chapman, T., Shervais, J. Pearce, J., 2020, Magma source evolution following subduction initiation: Evidence from the element concentrations, stable isotope ratios, and water contents of volcanic glasses from the Bonin forearc (IODP Expedition 352), G-Cubed, doi:10.1029/2020GC009054
  22. De Obeso, J., Ramos, D., Higgins, J., Kelemen, P., 2020, A Mg isotopic perspective on the mobility of magnesium during serpentinization and carbonation of the Oman ophiolite, JGR Solid Earth, doi: 10.1029/2020JB020237
  23. Dong, S., Berelson, W.,Teng, H., Rollins, N., Pirbadian, S., El-Naggar, M., Adkins, J., 2020,A Mechanistic Study of Carbonic Anhydrase Enhanced Calcite Dissolution, GRL, doi: 10.1029/2020GL089244
  24. Doucet, L., Li, Z., Gamal El Dien, H., Pourteau, A., Murphy, B., Collins, W., Matielli, N., Olierook, H., Spencer, C., Mitchell, R., 2020,  Distinct formation history for deep-mantle domains reflected in geochemical differences. Nat. Geosci., doi: 10.1038/s41561-020-0599-9
  25. Ferguson. A., Oakes, J., Eyre, B, 2020, Bottom trawling reduces benthic denitrification and has the potential to influence the global nitrogen cycle, Limnology and Oceanography Letters, doi:10.1002/lol2.10150
  26. Gallagher, C., Oettgen, H., BrabanderD., 2020, Beyond community gardens: A participatory research study evaluating nutrient and lead profiles of urban harvested fruit. Elementa: Science of the Anthropocene, doi:
  27. Garcia, W., Amann, T., Hartmann, J., Karstens, K., Popp, A., Boysen, L., Smith, P., Goll, D., 2020, Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology, Biogeosciences, doi: 10.5194/bg-17-2107-2020
  28. Gibaga, C., Arcilla, C., Hoang, N., 2020, Volcanic rocks from the Central and Southern Palawan Ophiolites, Philippines: Tectonic and mantle heterogeneity constraints, J Asian Earth Sci, doi:
  29. Glazner, A., Bartley, J., Law, B., 2020, Immiscibility and the origin of ladder structures, mafic layering, and schlieren in plutons, Geology, doi:10.1130/G47634.1
  30. Haproff,P. Odlum, M., Zuza, A., Yin, A., Stocki, D, 2020, Structural and Thermochronolgic constraints on the Cenozoic tectonic development of the northern Indo-Burma ranges, Tectonics, doi: 10.1029/2020TC006231
  31. Heard, A., Dauphas, N., Guilbaud, R., Roucel, O., Butler, I., Nie, N., Bekker, A., 2020, Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation, Science, doi: 10.1126/science.aaz8821
  32. Heerema, C., Talling, P., Cartigney, M, et al., 2020, What determines the downstream evolution of turbidity currents?EPSL, doi:10.1594/IEDA/324529
  33. Hein, C., Usman, M., Eglinton, T., Haghipour, N., Galy, V., 2020, Millennial-scale hydroclimate control of tropical soil carbon storage, Nature, doi: 10.1038/s41586-020-2233-9
  34. Herman, A., Forkel, R., McAlister, A., Cruickshank, A., Golitko, M., Kneebpne, B., McCoy, M., Reepmeyer, C., Sheppard, P., Sinton, J., Weisler, M., 2020, Pofatu, a curated and open-access database for geochemical sourcing of archaeological materials, Nature, doi: 10.1038/s41597-020-0485-8
  35. Hezel, D., 2020, as a Research and Learning Tool for Cosmochemistry, elements, doi:10.2138/gselements.16.1.73
  36. Homola, K., Spivak, A., Murray, R., 2020, High precision paleosalinity determination from measured porewater density, Marine Chemistry, doi:10.1016/j.marchem.2020.103868
  37. Horsburgh, J., Hooper, R., Bales, J., Hedstrom, M., Imker, H., Lehnert, K., Shanley, L., Stall, S., 2020, WIREs Water, doi: 10.1002/wat2.1422
  38. Hyung, E., Jacobsen, S., The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present, PNAS, doi:10.1073/pnas.2006950117
  39. Iacovino, K., Guild, M., Till, C., 2020,Aqueous fluids are effective oxidizing agents of the mantle in subduction zones, Contrib Min Pet, doi: 10.1007/s00410-020-1673-4
  40. Jaume-Segui, M., Kim, J., Pena, L., Goldstein, S., Knudson, K., Yehudai, M., Hartman, A., Bolge, L., Ferretti, P.,  2020, Distinguishing Glacial AMOC and Interglacial non–AMOC Nd Isotopic Signals in the Deep Western Atlantic over the last 1 Myr,Paleoceanography and Paleoclimatology,  doi: 10.1029/2020PA003877
  41. Jautzy, J., Savardi, M., Dhillon, R., Bernasconi, S., Smirnoff, A., 2020, Clumped isotope temperature calibration for calcite: Bridging theory and experimentation, Geochemical Persp Let., doi:10.7185/geochemlet.2021
  42. Jautzy, J., Savard, M., Lavoie, D., Ardakani, O., Dhillon, R., Defliese, W.,  Castagner, A., 2020, Clumped isotope geothermometry of an Ordovician carbonate mound, Hudson Bay Basin Journal of the Geological Society, doi:10.1144/jgs2020-102
  43. Jensen, L., Morton, P., Twining, B., Heller, M., Hatta, M., Measures, C., John, S., Zhang, R., Pinedo-Gonzalez, P, Sherrell, R., Fitzsimmons, J., 2020, A comparison of marine Fe and Mn cycling: U.S. GEOTRACES GN01 Western Arctic case study, GCA, doi:10.1016/j.gca.2020.08.006
  44. Johnson, C., Ressel, M., Ruprecht, P., 2020, Toward a Global Carlin-Type Exploration Model: The Relationship between Eocene Magmatism and Diverse Gold-Rich Deposits in the Great Basin, USA, Great Basin Eocene Metallogeny
  45. Jolivet, M., Boulvais,P., 2020Global significance of oxygen and carbon isotope compositions of pedogenic carbonates since the cretaceous,Geoscience Frontiers,doi: 10.1016/j.gsf.2020.12.012
  46. Kele, S., Sallam, E., Capezzuoli, E., Rogerson, M., Wanas, H., Shen, C-C., Lone, M., Yu, T-L., Schauer, A., Huntington, K., 2020, Were springline carbonates in the Kurkur-Dungul area (Southern Egypt) Journal of the Geological Society, doi: 10.1144/jgs2020-147
  47. Keller, C., Harrison, T., 2020, Constraining crustal silica on ancient Earth, EarthArXiv, doi: 10.31223/
  48. Klein, J., Jagoutz, O., 2020, Construction of a trans-crustal magma system: Building the Bear Valley Intrusive Suite, southern Sierra Nevada, California, EPSL, doi:
  49. Koffman, B., Goldstein, S., Winckler, G., Borunda, A., Kaplan, M., Bolge, L., Cai, Y., Recasens, C., Koffman, T., Vallelonga, P., 2020, New Zealand as a source of mineral dust to the atmosphere and ocean, Quaternary Science Reviews, doi: 10.1016/j.quascirev.2020.106659
  50. Koger, D., Newell, J., 2020, Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA, Solid Earth, doi: 10.5194/se-11-1969-2020
  51. Larson, E., 2020, Big Questions: Digital Preservation of Big Data in Government, The American Archivist, vol 83, no 1., doi: 10.17723/0360-9081-83.1.5
  52. Leutert, T.J., Auderset, A., Martínez-García, A. et al., 2020 Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nat. Geosci., doi:10.1038/s41561-020-0623-0
  53. Leutert, T.J., Modestou, S.,Bernasconi, S., Meckler, A., 2020, Southern Ocean bottom water cooling and ice sheet expansion during the middle Miocene climate transition, Climate of the Past, doi: 10.5194/cp-2020-157
  54. Liu, H., Sun, W-D., Deng, J-H., 2020, Statistical analysis on secular records of igneous geochemistry: Implication for the early Archean plate tectonics, Geological Journal, doi:10.1002/gj.3484
  55. Mackey, T. J., Jost, A. B., Creveling, J. R., & Bergmann, K. D., 2020, A decrease to low carbonate clumped isotope temperatures in Cryogenian strata. AGU Advances, doi: 10.1029/2019AV000159
  56. Massa, C., Beilman, D.,Nichols, J.,   Timm, O., 2020,Central Pacific hydroclimate over the last 45,000 years: Molecular-isotopic evidence from leaf wax in a Hawaiʻi peatland,Quaternary Science Reviews, doi: 10.1016/j.quascirev.2020.106744
  57. Mayhew, L., Ellison, E., 2020, A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals, Phil Trans Royal Soc, 2020, doi:10.1098/rsta.2018.0420
  58. Modestou, S., Leutert, T., Fernandez, A., Lear, C., Meckler, A.,
    2020, Warm middle Miocene Indian Ocean bottom water temperatures: comparison of clumped isotope and Mg/Ca based estimates, Paleoceanography and Paleoclimatology, doi: 10.1029/2020PA003927
  59. Moore,N., Grunder, A., Bohrson, W., Carlson, R.,  BIndeman, I., 2020, Changing mantle sources and the effects of crustal passage on the Steens Basalt, SE Oregon: Chemical and isotopic constraints, G-Cubed, doi:10.1029/2020GC008910
  60. Muirhead, J.D., Fischer, T.P., Oliva, S.J. et al. Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature , doi:10.1038/s41586-020-2328-3
  61. Newell, D., 2020, Collaborative Research: Quantifying crustal hydration effects in the Colorado Plateau from xenoliths, Funded Research Records. Paper 132.
  62. Newell, D., 2020,  EAGER – Mantle fluid contribution to springs along the Denali Fault System: Constraints on the crustal scale nature of the main strand and splays. Utah State University. PMCH-TN55
  63. Park, Y., Maffre, P., Godderis, Y., Macdonald, F., Antilla, E., Swanson-Hysell, N.,
    2020, Emergence of the Southeast Asian islands as a driver for Neogene cooling, PNAS. doi: 10.1073/pnas.2011033117
  64. Platonov, K., Naumova, V., 2020, The Center of quantitative data on geology: Current state and prospects for development, Russian Journal of Earth Sciences, doi:10.2205/2020ES00075
  65. Pourteau, A., Doucet, L., Blereau, E., Volante, S., Johnson, T., Collins, W., Li, Z-LX, Champoin, D., 2020, TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia, EPSL, doi:10.1016/j.epsl.2020.116548
  66. Regier, M.E., Pearson, D.G., Stachel, T. et al. ,2020, The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds. Nature, doi: 10.1038/s41586-020-2676-z
  67. Restreppo, G., Wood, W., Phrampus, B., 2020, Oceanic sediment accumulation rates predicted via machine learning algorithm: towards sediment characterization on a global scale. Geo-Mar Lett, doi:10.1007/s00367-020-00669-1
  68. Riggs, N., Sanchez, T., Reynolds, S., 2020, Evolution of the early Mesozoic Cordilleran arc: The detrital zircon record of back-arc basin deposits, Triassic Buckskin Formation, western Arizona and southeastern California, USA, Geosphere, doi: 10.1130/GES02193.1
  69. Rodriguez, M., Doherty, J. M., Hilary Man, H. L., Wang, R., Xiao, W., Zhou, B., et al., 2020, Intra‐valve elemental distributions in Arctic marine ostracodes: Implications for Mg/Ca and Sr/Ca paleothermometry. Geochemistry, Geophysics, Geosystems, 121, e2020GC009379
  70. Rose-Koga, E., Koga, K., Devidal, J-L., Shimizu, N., Le Voyer, M., Dalou, C., Doebeli, M., 2020, In-situ measurements of magmatic volatile elements, F, S, and Cl, by electron microprobe, secondary ion mass spectrometry, and heavy ion elastic recoil detection analysis, American Mineralogist, doi:10.2138/am-2020-7221
  71. Saper, L., Stolper, E., Controlled cooling-rate experimentson olivine-hosted melt inclusions: chemical diffusionand quantification of eruptive cooling-rates on Hawaii and Mars, G-Cubed, doi:10.1029/2019GC008772
  72. Schwab, M., HIlton, R., Raymonf, P., Haghipour, N., Amos, E., Tank, S., Holmes, R., Tippler, E., Eglinton, T., 2020, An Abrupt Aging of Dissolved Organic Carbon in Large Arctic Rivers, GRL, doi: 10.1029/2020GL088823,
  73. Schwartz, D., Wanless, D., Soule, S., Schmitz, M., Kurz, M., 2020, Monogenetic Near-Island Seamounts in the Galapagos archipelago, G-Cubed, doi:10.1029/2020GC008914
  74. Scott, B., Newell, D., Jessup, M., Grambling, T., Shaw, C.,Structural controls on crustal fluid circulation and hot spring geochemistry above a flat‐slab subduction zone, Peru, 2020, G-Cubed, doi: 10.1029/2020GC008919
  75. Shaughnessy, A., Gu, X., Wen, T., SL Brantley, S., 2020, Machine Learning Deciphers CO2 Sequestration and Subsurface Flowpaths from Stream Chemistry, Hydrology and Earth System Sciences, doi: 10.5194/hess-2020-537
  76. Thivet, S., Gurioli, L., Di Muro, A., Derrien, A., Ferrazzini, V., Gouhier, M., Coppola, D., Galle, B., Arellano, S., 2020, Evidences of plug pressurization enhancing magma fragmentation during the September 2016 basaltic eruption at Piton de la Fournaise (La Réunion Island, France), G-Cubed, doi:10.1029/2019GC008611
  77. Valentine, D., Zaslavsky, I., Richard, S., Meier, O., Hudman, G., Peucker-Ehrenbrink, B., Stocks, K., 2020, EarthCube Data Discovery Studio: A gateway into geoscience data discovery and exploration with Jupyter notebooks, Concurrency and Computation Pratice and Experience, doi: 10.1002/cpe.6086
  78. Wang, C., Hazen, R., Cheng, Q., Stephenson, M., Zhou, C., Fox, P,m Shen, S-Z., Oberhänsli, R., Hou, Z., Ma, X., Feng, Z., Fan, J., Ma, C., Hu, X., Lou, B., Wang, J., Schiffries, C., 2020, The Deep-Time Digital Earth program: data-driven discovery in geosciences, National Science Review, doi:10.1093/nsr/nwab027
  79. Winslow, H., Ruprecht, P., Stelten, M., Amigo, A., 2020, Evidence for primitive magma storage and eruption following prolonged equilibration in thickened crust, Bull Volcanol, doi:10.1007/s00445-020-01406-3
  80. Xu, X., Zhao, K., He, Z., Liu, L., Hong, W., 2020, Cretaceous volcanic-plutonic magmatism in SE China and a genetic model, Lithos, doi: 10.1016/j.lithos.2020.105728
  81. Zhang, J., 2020,  The applications of data science to petrology and geochemistry, Diss., Rice University.
  82. Zhang, M., Wang, C., Zhang, Q., Qin, Y., Shen, J., Hu, X., Zhou, G., Li, S., 2020, Temporal-Spatial Analysis of Alkaline Rocks Based on GEOROC, Applied Geochemistry, doi:
  83. Zhang, Z., Li, S., Wang, G., Li, Y., Wang, G., Suo, Y., Santosh, M.,Guo, L., 2020, Plume interaction and mantle heterogeneity: A geochemical perspective, Geoscience Frontiers, doi:10.1016/j.gsf.2020.02.009

EarthChem: 2019

  1. Abbey, A., and Niemi, N., 2019, Perspectives on continental rifting processes from spatiotemporal patterns of faulting and magmatism in the Rio Grande rift, USA, Tectonics, doi: 10.1029/2019TC005635
  2. Agather, A., Bowman, K., Lamborg, C., Hammerschmidt, C., 2019, Distribution of mercury species in the Western Arctic Ocean (U.S. GEOTRACES GN01), Marine Chemistry, doi:10.1016/j.marchem.2019.103686
  3. Aiuppa, A., Fischer, T., Plank, T., Bani P., 2019, CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015, Nature, doi: 10.1038/s41598-019-41901-y
  4. Aldega, L., Viola, G., Casas-Sainz, A., Marzen., M., Roman-Berdiel, T., van der Lelij, 2019, Unravelling multiple thermo-tectonic events accommodated by crustal-scale faults in northern Iberia, Spain: Insights from K-Ar dating of clay gouges, Tectonics, doi: 10.1029/2019TC005585
  5. Alexander, E., Wielicki, M., Harrison, T., DePaolo, D., Zhao, Z., Zhu, D., 2019, Hf and Nd Isotopic Constraints on Pre‐ and Syn‐collisional Crustal Thickness of Southern Tibet, JGR Solid Earth, doi: 10.1029/2019JB017696
  6. Balica, C., Ducea, M., Gehrels, G., Kirk, J., Roban, R., Luffi, P., Chapman, J., Triantafyllou, A., Guo, J., Stoica, A., Ruiz, J., Balintoni, I., Profeta, L., Hoffman, D., Petrescu, L., 2019, A zircon petrochronologic view on granitoids and continental evolution, EPSL, doi:10.1016/j.epsl.2019.116005
  7. Barry, P., de Moor, J., Giovanelli, D., Schrenk, M., Hummer, D., Lopez, T., Pratt, C., Alpizar Segura, Y., Battaglia, A., Beaudrey, P., Bini, G., Cascante, M., d’Errico, G., di Carlo, M., Fattorini, D., Fullerton, K., Gazel, E., Gonzalez, G., Halldorsson, S., Icaovino, K., Kulongoski, J., Manini, E., Martinez, M., Miller, H., Nakagawa, M., Ono, S., Patwardhan, S., Ramirez, C., Regoli, F., Smedile, F., Turner, S., Vetriani, M., Yucel, M., Ballentine, C., Fischer, T., Hilton, D, Lloyd, G, 2019, Forearc carbon sink reduces long-term volatile recycling into the mantle, Nature, doi:10.1038/s41586-019-1131-5
  8. Barry, P., Nakagawa, M., Giovannelli, D., de Moor, J., Schrenk, M., Seltzer, A., Manini, E., Fattorini, D., di Carlo, M., Regoli, F., Fullerton, K., Lloyd K., 2019, Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin, Scientific Data, doi:10.1038/s41597-019-0302-4
  9. Brounce, M., Cottrell, E., Kelley, K., 2019, The redox budget of the Mariana subduction zone, EPSL, doi:10.1016/j.epsl.2019.115859
  10. Brown, M., Johnson, T., 2019, Metamorphism and the evolution of subduction on Earth, American Mineralogist, doi:10.2138/am-2019-6956
  11. Cameron, C., Mulliken, K., Crass, S., Schafer, J., Wallace, K., 2019, Alaska Volcano Observatory Geochemical Database, Alaska Division of Geological & Geophysical Surveys Digital Data Series 8 v. 2, 22 p., doi: 10.14509/30058
  12. Cantine, M., Knoll, A., Bergmann, K., 2019, Carbonates before skeletons: A database approach, Earth Science Reviews, doi:10.1016/j.earscirev.2019.103065
  13. Casalini, M., Avanzinelli, R., Tommasini, S., Elliott, T., Conticelli, S., 2019, Ce/Mo and Molybdenum Isotope Systematics in Subduction-related Orogenic Potassic Magmas of Central-Southern Italy, G-Cubed, doi: 10.1029/2019GC008193
  14. Cho, J., 2019, Study of Asian RDR based on re3data, The Electronic Library, doi:  10.1108/EL-01-2019-0016
  15. Corry-Saavedra, K., Schindlbeck, J., Straub, S., Murayama, M., Bolge, L., Gomez-Tuena, A., Hashimoto, Y., Woodhead, J., 2019, The role of dispersed ash in orbital-scale time-series studies of explosive arc volcanism: insights from IODP Hole U1437B, Northwest Pacific Ocean, International Geology Review, doi:10.1080/00206814.2019.1584770
  16. Davila, F., Avila, P., Martina, F., 2019, Relative contributions of tectonics and dynamic topography to the Mesozoic-Cenozoic subsidence of southern Patagonia, J. South Am Earth Sci, doi: 10.1016/j.jsames.2019.05.010
  17. Davydova, M., Martynov, Y., Perepelov, A., 2019, Evolution of the Isotopic-Geochemical Composition of Rocks of Uksichan Volcano, Sredinnyi Range, Kamchatka, and Its Relations to the Tectonic Restyling of Kamchatka in the Neogene, Petrology, doi:10.1134/S0869591119030020
  18. de Oliveira Garcia, W., Amann, T., Hartmann, J., Karstens, K., Popp, A., Boysen L., Smith, P., Goll, D., 2019, Impacts of Enhanced Weathering on biomass production for negative
    emission technologies and soil hydrology, Biogeosciences Discussions, doi: 10.5194/bg-2019-386
  19. Eguchi, J., Seales, J., Dasgupta, R., 2019, Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon, Nature Geoscience, doi: 10.1038/s41561-019-0492-6
  20. El Dien, H., Doucet, L., Li, Z., 2019, Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle, Nature Geoscience, doi:10.1038/s41467-019-13300-4
  21. Errazuriz-Henao, C., Gomez-Tuena, A., Duque-Trujillo, J., Weber, M.,2019, The role of subducted sediments in the formation of intermediate mantle-derived magmas from the Northern Colombian Andes, Lithos, doi:10.1016/j.lithos.2019.04.007
  22. Fischer, T., Arellano, S., Carn, S., Aiuppa, A., Galle, B., Allard, P., Lopez, T., Shinohara, H., Kelly, P., Werner, C., Cardellini, C., Chiodini, G., 2019, The emissions of CO2 and other volatiles from the world’s subaerial volcanoes. Sci Rep, doi:10.1038/s41598-019-54682-1
  23. Gard, M., Hasterok, D., Hand, M., Cox, G., 2019, Variations in continental heat production from 4 Ga to the present: Evidence from geochemical data, Lithos, doi:10.1016/j.lithos.2019.05.034
  24. Guo,J., Ma, L., Gaillardet, J., Sak, P., Pereyra, Y., Engel, J., 2019, Reconciling chemical weathering rates across scales: Application of uranium-series isotope systematics in volcanic weathering clasts from Basse-Terre Island (French Guadeloupe), EPSL, 2019, doi: 10.1016/j.epsl.2019.115874
  25. Hassani, H., Kalantari, M., Ghodsi, Z., 2019, Evaluating the Performance of Multiple Imputation Methods for Handling Missing Values in Time Series Data: A Study Focused on East Africa, Soil-Carbonate-Stable Isotope Data, Stats, doi:10.3390/stats2040032
  26. Hasterok, D., Gard, M., Bishop, C., Kelsey, D., 2019, Chemical identification of metamorphic protoliths using machine learning methods, Computers and Geoscience, doi:10.1016/j.cageo.2019.07.004
  27. Hasterok, D., Gard, M., Cox, G, Hand, M., 2019, A 4 Ga record of granitic heat production: Implications for geodynamic evolution and crustal composition of the early Earth, Precambrian Research, doi:10.1016/j.precamres.2019.105375
  28. Haviludden, H., Budiman, E., Hidayat, N., 2019, A Database Integrated System Based on SOAP Web Service, TEM Journal, doi: 10.18421/TEM83-12
  29. Hazen, R., Downs, R., Eleish, A., Fox, P., Gagne, O., Golden, J., Grew, E., Hummer, D., Hystad, G., Krivovichev, V., Li, C., Ma, X., Morrison, S., Pan, F., Piers, A., Prabhu, A., Ralph, J., Runyon, S., Zhong, H., 2019, Data-driven discovery in mineralogy: Recent advances in data resources, analysis, and visualization, Engineering, doi: 10.1016/j.eng.2019.03.006
  30. Hazen, R., 2019, An evolutionary system of mineralogy: Proposal for a classification of planetary materials
    based on natural kind clustering, American Mineralogist, doi:10.2138/am-2019-6709CCBYNCND
  31. He, Y., Bai, Y., Tian, D., Yao, L., Fan, R., Chen, P.2019, A review of geoanalytical databases, Acta Geochimica, doi:10.1007/s11631-019-00323-3
  32. He, D., Lee, C-T., Yu, X., Farner, M., 2019, Ge/Si partitioning in igneous systems: constraints from laser ablation ICP-MS measurements on natural samples, G-Cubed, doi:10.1029/2019GC008514
  33. Hemming, S., 2019, New K/Ar age values and context from published clay mineralogy and Sr and Nd isotopes as tracers of terrigenous Atlantic Ocean sediments, Marine Geology, doi: 10.1016/j.margeo.2019.01.007
  34. Hernandez Gonzalez, L., Rivera, V., Phillips, C., Haug, L., Hatch, S., Yeager, L., Chang, H., Alvarez, J., Gnaedinger, K., Miller, W., Packman, A., 2019, Characterization of soil profiles and elemental concentrations reveals deposition of heavy metals and phosphorus in a Chicago-area nature preserve, Gensburg Markham Prairie Journal of Soils Sediments, doi: 10.1007/s11368-019-02315-5
  35. Hofmann, A., Class, C., Goldstein, S., 2019, Size and composition of the residual and depleted mantle reservoir, ESSOAr, doi:10.1002/essoar.10501102.1
  36. Hopley, P., Reade, H., Parrish, R., De Kock, M., Adams, J., 2019, Speleothem evidence for C3 dominated vegetation during the Late Miocene (Messinian) of South Africa, Review Palaeobotany and Palynology, doi:10.1016/j.revpalbo.2019.02.006
  37. Ishiwa, T., Yokoyama, T., Reuning, L., McHugh, C., De Vleeschouwer, D., Gallagher, S., 2019, Australian Summer Monsoon variability in the past 14,000 years revealed by IODP Expedition 356 sediments, Prog Earth Planet Sci, doi: 10.1186/s40645-019-0262-5
  38. Jones, D., Brothers, R., Ahm, A-S., Slater, N., HIggins, J., Fike, D., 2019, Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates, Geology, doi: 10.1130/G46861.1
  39. Juniper, S., Thronborough, K., Douglas, K., Hillier, J., 2019, Remote monitoring of a deep‐sea marine protected area: The Endeavour Hydrothermal Vents,Aquatic Conserv: Mar Freshw Ecosyst., doi: 10.1002/aqc.3020
  40. Kahn, N., Horton, B., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E., Tornqvist, E., Dutton, A., Hijama, M., Shennan, I., 2019, Inception of a global atlas of sea levels since the Last Glacial Maximum, Quaternary Science Reviews, doi: 10.1016/j.quascirev.2019.07.016
  41. Kaya-Keles, S., Polymeris, G., Meric, N., 2019, A component resolved study on the stable signal of Merck α-quartz: Tentative correlation among TL peaks, OSL components and EPR signals, Nuclear Instruments and Methods in Physics, doi:10.1016/j.nimb.2019.07.029
  42. Konter, J., Finlayson V., Engel, J., Jackson, M., Koppers, A., Sharma, S., 2019, EXPRESS: Shipboard Characterization of Tuvalu, Samoa, and Lau Dredge Samples Using Laser-Induced Breakdown Spectroscopy (LIBS), Applied Spectroscopy, doi:10.1177/0003702819830793
  43. Kumamoto, K., Warren, J., Hauri, E., 2019, Evolution of the Josephine Peridotite shear zones, Part 1: Compositional variation and shear initiation, JGR, doi: 10.1029/2019GC008399
  44. Kumamoto, K., Warren, J., Hansen, L., Evolution of the Josephine Peridotite shear zones, Part 2: Influences on olivine CPO evolution, JGR, doi: 10.1029/2019JB017968
  45. Lages, J., Burbano, V., Meza, L., Arellano, S., Liuzzo, M., Giudice, G., Aiuppa, A., Bitetto, M., Lopez, C., Chacon, Z., 2019, Volcanic gas emissions along the Colombian Arc Segment of the Northern Volcanic Zone (CAS-NVZ): Implications for the volatile budget and monitoring of the Andean Volcanic Belt (AVB), G-Cubed, doi:10.1029/2019GC008573
  46. Le Roux, V., Liang, Y., 2019, Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle, MInerals, doi:10.3390/min9090565
  47. Lieu, W., 2019, Statistical Treatment and Modeling of Geochemical Data of Volcanic Arcs, PhD Thesis, University of Texas, Dallas, 159 pp.
  48. Lieu, W., and Stern, R., 2019, The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs, Geosphere, doi: 10.1130/GES01667.1
  49. Linol, B., de Villiers, S., de Wit, M., 2019, Accelerated contribution of the paleo‐Congo River to global seawater 87Sr/86Sr change following Eocene‐Oligocene collapse of the African Surface, G-Cubed, doi: 10.1029/2018GC007984
  50. Liu, D., Bertrand, S., Weltje, G., 2019, An Empirical Method to Predict Sediment Grain Size from Inorganic Geochemical Measurements, doi: 10.1029/2018GC008154
  51. Liu, Y., Lu, H., Yin, X., Ruffine, L., Cagatay, M., Yang, H., Chen, C., He, D., Zhu, Z., Yalamaz, B., 2019, Interpretation of Late‐Pleistocene/Holocene transition in the Sea of Marmara from geochemistry of bulk carbonates, G-Cubed, doi:10.1029/2019GC008364
  52. Liu, H., Sun, W., Zartman, R., Tang, M., 2019, Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago, Nature Communications, doi:10.1038/s41467-019-11329-z
  53. Liu, H., Sun W-D., Deng, J., 2019, Statistical analysis on secular records of igneous geochemistry: Implication for the early Archean plate tectonics, Geological Journal, doi: 10.1002/gj.3484
  54. Liu, H., Sun, W-D., Deng, J-H., 2019, Transition of subduction-related magmatism from slab melting to dehydration at 2.5 Ga, Precambrian Research, doi: 10.1016/j.precamres.2019.105524
  55. Liu, H., Zartman, R., Ireland, T., Sun, W-D., 2019, Global atmospheric oxygen variations recorded by Th/U
    systematics of igneous rocks, PNAS, doi: 10.1073/pnas.1902833116
  56. Liu, J., Luo, G., Lu, Z., Lu, W., Qie, W., Zhang, F., Wang, X., Xie, S., 2019, Intensified ocean deoxygenation during the end Devonian mass extinction, G-Cubed, doi: 10.1029/2019GC008614
  57. Lucca, A., Storti, F., Balsamo, F.,Clemenzi, L., Fondriest, M.,Burgess, R., Di Toro, G., 2019, From submarine to subaerial out-of-sequence thrusting andgravity-drivenextensional faulting: Gran Sasso Massif, Central Apennines, Italy, Tectonics, doi: 10.1029/2019TC005783
  58. Lupin, R., Russell, J., Yost, C., Kingston, J., Deino, A., Logan, J., Schuh, A., Cohen, A., 2019, Vegetation change in the Baringo Basin, East Africa across the onset of Northern Hemisphere glaciation 3.3–2.6 Ma, Palaeo, doi:10.1016/J.PALAEO.2019.109426
  59. Ma, L., Dosseto, A., Gaillardet, J., Sak, P., Brantley, S., 2019, Quantifying weathering rind formation rates using in situ measurements of U-series isotopes with laser ablation and inductively coupled plasma-mass spectrometry, GCA, doi:10.1016/j.gca.2018.12.020
  60. Mana, S., Fontijn, K., DiMaggio, E., 2019,Compiling geochemistry, geochronology and physical information of EAR explosive events to constrain the spatial and temporal evolution of the rift,
    American Geophysical Union, Fall Meeting 2019, abstract #V11C-04, BibCode: 2019AGUFM.V11C..04M
  61. Mazza, S., Gazel, E., Bizimis, M., Moucha, R., Beguelin, P., Johnson, E., McAleer, R., Sobolev, A., 2019, Sampling the volatile-rich transition zone beneath Bermuda, Nature, doi: 10.1038/s41586-019-1183-6
  62. McDannell, K., Schneider, D., Zeitler, P., O’Sullivan, P., Issler, D., 2019, Reconstructing deep‐time histories from integrated thermochronology: An example from southern Baffin Island, Canada, Thermo2018, 16th International Conference on Thermochronology, Terra Nova, doi: 10.1111/ter.12386
  63. Meinicke, N., Ho, S., Hannisdal, B., Nurnberg, D., Tripati, A., Schiefbel, R., Meckler, A. , 2019, A robust calibration of the clumped isotopes to temperature relationship for foraminifers, GCA, doi:10.1016/j.gca.2019.11.022
  64. Mewes, D., 2019, Periphyton-grazer interactions in headwater
    streams , PhD Thesis Universität Koblenz-Landau
  65. Morrison, S., Prabhu, A., Eleish, A., Pan, F., Zhong, H., Huang, F., Fox, P., Ma, X., Ralph, J., Golden, J., Downs, R., Liu, C., Runyon, S., Hazen, R., 2019, Application of Advanced Analytics and Visualization in Mineral Systems, Acta Geologica Sinica
  66. Mustaphi, C., Brahney, J., Aquino-Lopez, M., Goring, S., Orton, K., Noronha, A., Czaplewski, J., Asena, Q., Paton, S., Brushworth, J., 2019, Guidelines for reporting and archiving 210Pb sediment chronologies to improve fidelity and extend data lifecycle, Quaternary Geochronology, doi:10.1016/j.quageo.2019.04.003
  67. Naumova, V., Eremenko, V., Platonov, K., Dyakov, S.,Eremenko, A., 2019, Development of geographically distributed information-analytical geological environment, Russian Journal of Earth Sciences, doi: 10.2205/2019ES000696
  68. Orcutt, B., Daniel, I., Dasgupta, R., 2019, Deep Carbon: Past to Present, Cambridge University Press, ISBN: 9781108477499
  69. Parr, C., Gries, C., O’Brien, M., Downs, R.R., Duerr, R., Koskela, R., Tarrant, P., Maull, K.E., Hoebelheinrich, N. and Stall, S., 2019, A Discussion of Value Metrics for Data Repositories in Earth and Environmental Sciences. Data Science Journal, doi:
  70. Petit, B., Blum, M., Pecha, M., McLean, N., Bartschi, N., Saylor, J., 2019, Detrital-Zircon U-Pb Paleodrainage Reconstruction and Geochronology of the Campanian Blackhawk–Castlegate Succession, Wasatch Plateau and Book Cliffs, Utah, U.S.A., Journal of Sedimentary Research, doi: 10.2110/jsr.2019.18
  71. Pitcher, B., Kent, A., 2019, Statistics and segmentation: Using Big Data to assess Cascades arc compositional variability, GCA, doi:10.1016/j.gca.2019.08.035
  72. Porter, R., van der Lee, S., Whitmeyer, S., 2019, Synthesizing EarthScope data to constrain the thermal evolution of the continental U.S. lithosphere, Geosphere, doi:10.1130/GES02000.1
  73. Rittenour, T., 2019, Collaborative Research: TESPRESSO, Tectonic Encoding, Shredding, and Propagation of Environmental
    Signals as Surficial Observables, Funded Research Records. Paper 106.
  74. Saha, S., Dasgupta, R., 2019, Phase Relations of a Depleted Peridotite fluxed by a CO2-H2O fluid–Implications for the Stability of Partial Melts versus Volatile-bearing Mineral Phases in the Cratonic Mantle, JGR Solid Earth, doi: 10.1029/2019JB017653
  75. Sammon, L., Gao, C., McDonough, W., 2019, Lower Crustal Composition in the Southwestern United States, JGR
  76. Santosh, M., Tsunogae, T., Yang, C-X., Han, Y-S., Hari, K., Prasanth, M., Uthup, S., 2019, The Bastar Craton, central India: A window to Archean – Paleoproterozoic crustal evolution, Gondwana Research, doi:10.1016/
  77. Shimizu, K., Ito, M., Chang, Q., Miyazaki, T., Ueki, K., Toyama, C., Sends, R., Vaglarov, B., Ishikawa, T., Kimura, J-I., 2019, Identifying volatile mantle trend with the water–fluorine–cerium systematics of basaltic glass, Chemical Geology, doi:10.1016/j.chemgeo.2019.06.014
  78. Sobolev, A., Asafov, E., Gurenko, A., Arndt, N., Batanova, V., Portnyagin, M., Garbe-Schoenberg, D., Wilson, A., Byerly, G., 2019, Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago, Nature, doi:10.1038/s41586-019-1399-5
  79. Spencer, C., Murphy, J., Hoiland, C., Johnson, S., Mitchell, R., Collins, W., 2019, Evidence for whole mantle convection driving Cordilleran tectonics, Geophysical Research, doi: 10.1029/2019GL082313
  80. Stall, S., Yarmey, L., Cutcher-Gershenfeld, J., Hanson, B., Lehnert, K., Parsons, M., Robinson, E., Wyborn, L., 2019, Make scientific data FAIR, Nature, doi: 10.1038/d41586-019-01720-7
  81. Tamburello, G., Mune, S., Allard, P., Venugopal, S., Robert, V., Komoroski, J-C., Beauducel, F., De Chabalier, J-B., Le Marchand, A., Le Friant, A., Bonifacie, M., Dessert, C., Moretti, R., 2019, Spatio-Temporal Relationships between Fumarolic Activity, Hydrothermal Fluid Circulation and Geophysical Signals at an Arc Volcano in Degassing Unrest: La Soufrière of Guadeloupe (French West Indies), Geosciences, doi:10.3390/geosciences9110480
  82. Tang, M., Lee, C., Chen, K., Erdman, M., Costin, G., Jiang, H., 2019, Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation, Nature Communications, doi:10.1038/s41467-018-08198-3
  83. Tang, M., Lee, C-T., Costin, G., Hoefer, H., 2019, Recycling reduced iron at the base of magmatic orogens, EPSL, doi:10.1016/j.epsl.2019.115827
  84. Tarkyth, D., 2019, The Challenges of Big Data in Expanding Geoscience: Embracing New Initiatives to Untangle our World, GeoScience Canada, doi:10.12789/geocanj.2019.46.152
  85. Tuite, M., Willifors, K., Macko, S., 2019, From greenhouse to icehouse: Nitrogen biogeochemistry of an epeiric sea in the context of the oxygenation of the Late Devonian atmosphere/ocean system, Paleogeography, Paleoclimatology, Paleoecology, doi:10.1016/j.palaeo.2019.05.026G
  86. Walker, J., Tikoff, B., Newman, J., Clark, R., Ash, J., Good, J., Bunse, E., Moeller, A., Kahn, M., Williams, R., Michels, Z., Andre, J., Rufelt, C., 2019, StraboSpot data system for structural geology, Geosphere, doi:10.1130/GES02039.1
  87. Wang, W., Yang, X., Bidgoli, T., Ye, J.,2019, Detrital zircon geochronology reveals source-to-sink relationships in the Pearl River Mouth Basin, China, Sedimentary Geology, doi: 10.1016/j.sedgeo.2019.04.004
  88. Wang, W., Bidgoli, T., 2019, Detrital zircon geochronologic constraints on patterns and drivers of continental-scale sediment dispersal in the Late Mississippian, G-Cubed, doi: 10.1029/2019GC008469
  89. Weber G, Arce, J., Ulianov, A., Caricchi, L., 2019, A recurrent magmatic pattern on observable time scales prior to Plinian eruptions from Nevado de Toluca (Mexico), G-Cubed, doi:10.1029/2019JB017640
  90. Weinstein, Y., Nuriel, P., Inbar, M., Jicha, B., Weinberger, R., 2019, Impact of the Dead Sea Transform kinematics on adjacent volcanic activity, Tectonics, doi:10.1029/2019TC005645
  91. White, L., Rawlinson, N., Lister, G., Waldhauser, F., Hejrani, B., Thompson, D., Tanner, D., Macpherson, C., Tkalcic, H., Morgan, J., 2019, Earth’s deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes, EPSL, doi:10.1016/j.epsl.2019.05.048
  92. Willhite, L., Jackson M., Blichert-Toft, J., Bindeman, I., Kurz, M., Halldorsson, A., Hardardottir, S., Gazel, E. Price, A., Byerly, B., 2019, Hot and heterogenous high‐3He/4He components: New constraints from proto‐Iceland plume lavas from Baffin Island, G-Cubed, doi:10.1029/2019GC008654
  93. Woodhead, J., Hergt, J., Giuliani, A., Maas, R., Phillips, D., Pearson, D., Nowell, G., 2019, Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir, Nature, doi: 10.1038/s41586-019-1574-8
  94. Wu, M., Benn, J., Burton, A., Cox, S., 2019, Future Directions in Data Discovery, eResearch Australasia Conference, Brisbane-Australia, 21-25 October.
  95. Xiao, M., Yao, Y-J, Cai, Y., Qiu, H-N., Xu, Y-G., Xu, X., Jiang, Y-D, Li, Y-B., Xia, X-P., Yu, Y-J., 2019, Evidence of Early Cretaceous lower arc crust delamination and its role in the opening of the South China Sea, Gondwana Research, doi:10.1016/
  96. Yang, C., Yang, S., Song, J., Vigier, N., 2019, Progressive evolution of the Changjiang (Yangtze River) sediment weathering intensity since the Three Gorges Dam construction, JGR Earth Surface, doi:10.1029/2019JF005078
  97. Yang, A., Wang, C., Liang, Y., Lissenberg, C., 2019, Reaction between mid-ocean ridge basalt and lower oceanic crust: An experimental study, G-Cubed, doi: 10.1029/2019GC008368
  98. Zhao, P., Appel, E., Xu, B., Sukhbaatar, First Paleomagnetic Result from the Early Permian Volcanic Rocks in Northeastern Mongolia: Evolutional Implication for the Paleo‐Asian Ocean and the Mongol‐Okhotsk Ocean, JGR, doi: 10.1029/2019JB017338
  99. Zurek, J., Moune, S., Williams-Jones, G., Vigouroux, N., Gauthier, P-J., 2019, Melt inclusion evidence for long term steady-state volcanism at Las Sierras-Masaya volcano, Nicaragua, Journal of Volcanology and Geothermal Research, doi:10.1016/j.jvolgeores.2019.04.007

EarthChem: 2018

  1. Abbey, A., 2018, Assessing Rio Grande Rift Development and Exhumation in the Southern Rocky Mountains Using Techniques in Low-temperature Thermochronometry,PhD Thesis University of Michigan
  2. Blanchet, C., 2018, A database of marine and terrestrial radiogenic Nd and Sr isotopes for tracing earth-surface processes, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2018-109
  3. Cheatham, M., Krisnadhi, A., Amini, R., Hitzler, P., Krzysztof, J., Sheperd, A., Narock, T., Jones, M., Ji, P., 2018, The GeoLink Knowledge Graph
  4. Cigolini, C., Taticchi, T., Alvarado, G., Lailo, M., Coppola, D., 2018, Geological, petrological and geochemical framework of Miravalles-Guayabo caldera and related lavas, NW Costa Rica, J Volc and Geothermal Res, doi:10.1016/j.jvolgeores.2018.05.013
  5. Cooper, J.N., Cooper, A.M., Clausen, B.L. et al., 2018,  Regional bedrock geochemistry associated with podoconiosis evaluated by multivariate analysis, Environ Geochem Health, doi:10.1007/s10653-018-0158-0
  6. Du, A., Robinson, J., Rowan, J., Lazagabaster, I., Behrensmeyer, A., 2018, Stable carbon isotopes from paleosol carbonate and herbivore enamel document differing paleovegetation signals in the eastern African Plio-Pleistocene, Rev of Paleobotany and Palynology, doi:10.1016/j.revpalbo.2018.11.003
  7. Durand, A., Chase, Z., Noble, T., Bostock, H., Jaccard, S. Townsend, A., Bindoff, N., Neil, H., Jacobsen, G., 2018, Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum, EPSL, doi:10.1016/j.epsl.2018.03.036
  8. Grant, H.,D.Hannington, D., Petersen, S.,  Frische, M., Fuchs, S., 2018, Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite, Chemical Geology, doi:10.1016/j.chemgeo.2018.08.019
  9. Gries, C., Budden, A., Laney, C., O'Brien, M., Servilla, M., Sheldon, W., Vanderbilt, K., Vieglais, D., 2018, Facilitating and Improving Environmental Research Data Repository Interoperability, Data Science Journal, doi:10.5334/dsj-2018-022
  10. Haraguchi, S., Ueki, K, Yoshida, K., Kuwatani, T., Mohaned, M., Horiuchi, S., Iwamori, H., 2018, Geochemical database of Japanese islands for basement rocks, Goelogical Magazine, doi:10.5575/geosoc
  11. Hasenmueller, E. A., Jin, L., Stinchcomb, G. E., Lin, H., Brantley, S. L., & Kaye, J. P., 2015, Topographic controls on the depth distribution of soil CO2 in a small temperate watershed, Applied Geochemistry, doi: 10.1016/j.apgeochem.2015.07.005
  12. Homrighausen, S., Hoernle, K., Geldmacher, J., Wartho, J-A., Portnyagin, M., Werner, R., can den Bogaards, P., Garbe-Schoenberg,D., 2018, Unexpected HIMU-type late-stage volcanism on the Walvis Ridge, EPSL, doi:10.1016/j.epsl.2018.03.049
  13. Homrighausen, S., Hoernle, K., HAuff, F., Wartho, J-A., van den Bogaard, P., Garbe-Scheonberg, D., 2018, New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin, GCA, doi: 10.1016/j.gca.2018.09.002
  14. Inguaggiato, C., Iniguez, E., Peiffer, L., Kretzschmar, T., Brusca, L., Mora-Amador, R., Ramirez, C., Bellomo, S., Gonzalez, G., Rouwet, D., 2018, REE fractionation during the gypsum crystallization in hyperacid sulphate-rich brine: The Poás Volcano crater lake (Costa Rica) exploited as laboratory, Gondwana Research, doi:10.1016/
  15. Keller, B., Schoene, B., 2018, Plate tectonics and continental basaltic geochemistry throughout Earth history, EPSL, doi:10.1016/j.epsl.2017.10.031.
  16. Krautz, J.,Gärtner, A., , Hofmann, M., Linnemann, U., Klebera, A. 2018, Cover beds older than the mid-pleistocene revolution and the provenance of their eolian components, La Sal Mountains, Utah, USA, Quaternary Science Reviews, doi:10.1016/j.quascirev.2018.01.012
  17. Larsson, S., Wastegård, S., 2018,The Laacher See Tephra discovered in southernmost Sweden, J Quaternary Sci, doi:10.1002/jqs.3033
  18. Lister, A., Leites, L., 2018, Modeling and simulation of tree spatial patterns in an oak-hickory forest with a modular, hierarchical spatial point process framework, Ecological Modelling, doi:10.1016/j.ecolmodel.2018.03.012
  19. Manuella, F.,  Scribano, V., Carbone, F., 2018, Abyssal serpentinites as gigantic factories of marine salts and oil, Marine and Petroleum Geology, doi: 10.1016/j.marpetgeo.2018.03.026
  20. Masmoudi, M., Taktak, H., Lamine, S., Boukadi, K., Karray, M., Zghal, H., Archimede, B., Mrissa, M., Guegan, C., 2018, PREDICAT: A semantic service-oriented platform for data interoperability and linking in earth observation and disaster prediction, 2018 IEEE 11th International Conference on Service-Oriented Computing and Applications, doi: 10.1109/SOCA.2018.00035
  21. Nan, X., Yu H., Rudnick, R., Gaschnig, R., Xu, J., Li, W-Y., Zhang, Q., Jin, Z-D, Huang, F., 2018, Barium isotopic composition of the upper continental crust, GCA, doi: 10.1016/j.gca.2018.05.004
  22. Paduan, J., Zierenberg, R., Clague, D., Spelz-Madero, R., Caress, D., Troni, G., Thomas, H., Glessner, J., Lilley, M., Lorenson, T., Lupton, J., Neumann, F., Rio, M., Wheat, G., 2018, Discovery of Hydrothermal Vent Fields on Alarcón Rise and in Southern Pescadero Basin, Gulf of California, G-Cubed, doi:10.1029/2018GC007771
  23. Peters, B., Carlson, R.W., Day, J., Horan, M., 2018, Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source, Nature. doi:10.1038/nature25754
  24. Petersen, M., Glöckler, F., Kiessling, W., Döring, M., Fichtmüller, D., Laphakorn, L., Baltruschat, B., Hoffmann, J., 2018, History and development of ABCDEFG: a data standard for geosciences,  Foss. Rec., doi:10.5194/fr-21-47-2018.
  25. Pitcher, B., Kent, A., 2018, Statistics and segmentation: 2 Using Big Data to assess Cascades Arc compositional variability, EarthArXiv, doi:10.31223/
  26. Porter, R., van der Lee, S., 2018,
    Mapping the Thickness of Thermal Lithosphere Across the Continental US, American Geophysical Union, Fall Meeting 2018, abstract #T52D-07
  27. Ruth, D., Costa, F., Bouvet de Maisonneuve, C., Franco, L., Cortes, J., Calder, E., 2018, Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption, Nature Communications, doi:10.1038/s41467-018-05086-8
  28. Schiller, M., Bizzarro, M.,  Fernandes, V., 2018, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon, Nature, doi:10.1038/nature25990
  29. Shinevar, W., Behn, M., Hirth, G. Jagoutz, O., 2018, Inferring crustal viscosity from seismic velocity: Application to the lower crust of Southern California, EPSL, doi:10.1016/j.epsl.2018.04.055
  30. Schutt D., Lowry, A., Buehler, J., 2018, Moho temperature and mobility of lower crust in the western United States, Geology, doi:10.1130/G39507.1.
  31. Schroeder, PA, Clays in the critical zone, Cambridge University Press. 2018: doi: 10.1017/9781316480083
  32. Spencer C.J., Kirkland, C.L., Roberts, N.M., 2018 Implications of erosion and bedrock composition on zircon fertility; examples from South America and Western Australia. Terra Nova, doi:10.1111/ter.12338
  33. Tanner, D., McDonald, I., Harmer, R, Muir, D., Hughes, H., 2018, A Record Of Assimilation Preserved By Exotic Minerals In The Lowermost Platinum-Group Element Deposit Of The Bushveld Complex: The Volspruit Sulphide Zone, Lithos, doi:10.1016/j.lithos.2018.10.032
  34. Tikoff, B., Chatzaras, V., Newman, J., Roberts, N., 2018, Big data in microstructure analysis: Building a universal orientation system for thin sections. J Structural Geology, doi:10.1016/j.jsg.2018.09.019
  35. Van Plantinga, A., Grossman, E., 2018, Stable and clumped isotope sclerochronologies of mussels from the Brazos River, Texas (USA): Environmental and ecologic proxy, Chemical Geology, doi: 10.1016/j.chemgeo.2018.10.012
  36. Voynets, A., Kostitsyn, Y., Pevzner, M., Goltsman, Y. Perepelov,  2018, Sr-Nd isotopic composition of Neogene-Quaternary volcanic rocks of the Sredinny Range, Kamchatka: Implications for magma generation in the back-arc, 10th Biannual Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2018)
  37. Wang, W., Bidgoli, T., Yang, X., Ye, J., 2018, Source‐to‐sink links between East Asia and Taiwan from detrital zircon geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin, G-Cubed, doi: 10.1029/2018GC007576
  38. Weitzman, J., Kaye, J.,2018, Nitrogen budget and topographic controls on nitrous oxide in a shale-based watershed, JGR, doi:10.1029/2017JG004344
  39. Williams , C., Mukhopadhyay, S. 2018, Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon ,Nature, doi: 10.1038/s41586-018-0771-1
  40. Winslow, H., 2018, A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes, Master's Thesis, University of Nevada, Reno, 113 pp.
  41. Wipperfurth, S., Meng, G., Sramek, O., McDonough, W., 2018, Earth’s chondritic Th/U: negligible fractionation during accretion, core formation, and crust - mantle differentiation, arXiv:1801.05473 [physics.geo-ph].
  42. Yang, S., Humayun, M., Salters, V., 2018, Elemental systematics in MORB glasses from the Mid‐Atlantic Ridge, G-Cubed, doi:10.1029/2018GC007593

EarthChem: 2017

  1. Aiuppa A, Fischer TP, Plank T, Robidoux P, Napoli R. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth-Science Reviews. 2017;168, doi:10.1016/j.earscirev.2017.03.005
  2. Aiuppa A, Bitetto M, Francofonte V, Velasquez G, Bucarey Parra C, Giudice G, et al. A CO2-gas precursor to the March 2015 Villarrica volcano eruption. Geochemistry, Geophysics, Geosystems. 2017, doi:10.1002/2017GC006892
  3. Baziotis I, Economou-Eliopoulos M, Asimow PD. Ultramafic lavas and high-Mg basaltic dykes from the Othris ophiolite complex, Greece. Lithos. 2017;288-289, doi:10.1016/j.lithos.2017.07.015
  4. Begeman CB, Tulaczyk SM, Fisher AT. Spatially variable geothermal heat flux in West Antarctica: evidence and implications. Geophysical Research Letters. 2017;44. doi:10.1002/2017GL075579
  5. Burnham AD, Berry AJ. Formation of Hadean granites by melting of igneous crust. Nature Geoscience. 2017. doi:10.1038/ngeo2942
  6. Camp VE, Ross ME, Duncan RA, Kimbrough DL. Uplift, Rupture, and Rollback of the Farallon Slab reflected in Volcanic Perturbations along the Yellowstone Adakite Hotspot Track. Journal of Geophysical Research: Solid Earth. 2017;122. doi:10.1002/2017JB014517
  7. Clemens JD, Stevens G, Frei D, Joseph CS. Origins of cryptic variation in the Ediacaran–Fortunian rhyolitic ignimbrites of the Saldanha Bay Volcanic Complex, Western Cape, South Africa. Contributions to Mineralogy and Petrology. 2017;172(11-12).doi:10.1007/s00410-017-1419-0
  8. Clemens JD, Buick IS, Frei D, Lana C, Villaros A. Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the ‘smoking gun’ of mantle melting and crustal growth during Cape granite genesis? Contributions to Mineralogy and Petrology. 2017;172(72). doi:10.1007/s00410-017-1390-9
  9. Dixon JE, Bindeman IN, Kingsley RH, Simons KK, le Roux PJ, Hajewski TR, et al. Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox. Geochemistry, Geophysics, Geosystems. 2017;18. doi:10.1002/2016GC006743
  10. Dutton A, Rubin K, McLean N, Bowring J, Bard E, Edwards R, et al. Data reporting standards for publication of U-series data for geochronology and timescale assessment in the earth sciences. Quaternary Geochronology. 2017;39. doi: 10.1016/j.quageo.2017.03.001
  11. Fischer-Gödde M, Kleine T. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature. 2017;541(7638):525-7. doi: 10.1038/nature21045
  12. Gardiner NJ, Johnson TE, Kirkland CL, Smithies HR. Melting Controls on the Lutetium–Hafnium Evolution of Archaean Crust. Precambrian Research. 2017;305. doi: 10.1016/j.precamres.2017.12.026
  13. Goldblatt, C., Johnson, B., Poulton, S., 2017, Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth, Nature Communications, doi: 10.1038/s41467-017-01453-z
  14. Gonzalez C, Aguilera F. A Preliminary Assessment of the Volatiles Control in the Central Andean Volcanic Zones, Northern Chile. In: 13th Gas Workshop. Ecuador; 2017.
  15. Klein BZ, Jagoutz O, Behn MD. Archean crustal compositions promote full mantle convection. Earth and Planetary Science Letters. 2017;474. doi: 10.1016/j.epsl.2017.07.003
  16. Liu C, Knoll AH, Hazen RM. Geochemical and mineralogical evidence that Rodinian assembly was unique. Nature Communications. 2017;(1). doi: 10.1038/s41467-017-02095-x
  17. Ma X. Encyclopedia of Big DataData Repository. Vol 412. Schintler LA, McNeely CL, editors. Cham: Springer International Publishing; 2017.
  18. Nagy CR, Porder S, Brando P, Davidson EA, Michela A, Figueira S, et al. Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil. Journal of Geophysical Research: Biogeosciences. 2017. doi: 10.1002/2017JG004269
  19. Palmer CL, Thomer AK, Baker KS, Wickett KM, Hendrix CL, RODMAN A, et al. Site-based data curation based on hot spring geobiology. PLOS ONE. 2017;12(3). doi: 10.1371/journal.pone.0172090
  20. Pitcher B. The Deschutes Formation: Evidence of Extension-Enhanced Explosivity in the Early High Cascades. Vol PhD. Oregon State University; 2017.
  21. Price JB, Wernicke BP, Cosca MA, Farley KA. Thermochronometry across the Austroalpine-Pennine boundary, Central Alps, Switzerland: Orogen-perpendicular normal fault slip on a major ‘overthrust’ and its implications for orogenesis. Tectonics. 2017. doi: 10.1002/2017TC004619
  22. Spencer CJ, Roberts NM, Santosh M. Growth, destruction, and preservation of Earth's continental crust. Earth-Science Reviews. 2017;172:87-106. doi: 10.1016/j.earscirev.2017.07.013
  23. Sudarikov S. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions. Notes of the Mining Institute. 2017.
  24. Quantitative Methods in the Humanities and Social SciencesHeritage and Archaeology in the DigitalAge A New Approach to Online Visual Analysis and Sharing of Archaeological Surveys and Image Collections. Vol 302238307. Vincent ML, López-Menchero Bendicho VM, Ioannides M, Levy TE, editors. Cham: Springer International Publishing; 2017.
  25. Waide RB, Brunt JW, Servilla MS. Demystifying the Landscape of Ecological Data Repositories in the United States. BioScience. 2017. doi: 10.1093/biosci/bix117
  26. Wang W, Ye J, Bidgoli T, Yang X, Shi H, Shu Y. Using Detrital Zircon Geochronology to Constrain Paleogene Provenance and its Relationship to Rifting in the Zhu 1 Depression, Pearl River Mouth Basin, South China Sea. Geochemistry, Geophysics, Geosystems. 2017;18. doi: 10.1002/2017GC007110
  27. Wotchoko P, Nkouathio D, Kouankap N, Chenyi M-, Guedjeo C, Bulam A, et al. Petrogenesis of Lava from Wainama West, Mount Oku (CVL): Source Characterization and Magma Evolution. J Geoscince and Geomatics. 2017;5(1). doi: 10.12691/jgg-4-4-3

EarthChem: 2016

  1. Bachmann O, Huber C. Silicic magma reservoirs in the Earth’s crust. American Mineralogist. 2016;101. doi: 10.2138/am-2016-5675
  2. Bailey DG, Lupulescu MV, Chiarenzelli JR, Traylor JP. Age and origin of the Cannon Point syenite, Essex County, New York: Southernmost expression of Monteregian Hills magmatism? Canadian Journal of Earth Sciences. 2016. doi: 10.1139/cjes-2016-0144
  3. Barth AP, Wooden JL, Miller DM, Howard KA, Fox LK, Schermer ER, et al. Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the Jurassic arc, eastern Mojave Desert, California. Geological Society of America Bulletin. 2016:B31550.1. doi: 10.1130/B31550.1
  4. Brueckner SM, Piercey SJ, Pilote J-, Layne GD, Sylvester PJ. Mineralogy and mineral chemistry of the metamorphosed and precious metal-bearing Ming deposit, Canada. Ore Geology Reviews. 2016;72:914-39. doi: 10.1016/j.oregeorev.2015.09.016
  5. Burkhardt C, Borg LE, Brennecka GA, Shollenberger QR, Dauphas N, Kleine T. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature. 2016;537(7620):394-8. doi: 10.1038/nature18956
  6. Caracausi A, Avice G, Burnard PG, Füri E, Marty B. Chondritic xenon in the Earth’s mantle. Nature. 2016. doi: 10.1038/nature17434
  7. Clemens JD, Regmi K, Nicholls IA, Weinberg R, Maas R. The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas. Contributions to Mineralogy and Petrology. 2016;171(4). doi: 10.1007/s00410-016-1251-y
  8. Cosentino NJ, Jordan TE. 87Sr/86Sr of calcium sulfate in ancient soils of hyperarid settings as a paleoaltitude proxy: Pliocene to Quaternary constraints for northern Chile (19.5-21.7°S). Tectonics. 2016. doi: 10.1002/2016TC004185
  9. Elkins LJ, Scott SR, Sims KW, Rivers ER, Devey CW, Reagan MK, et al. Exploring the role of mantle eclogite at mid-ocean ridges and hotspots: U-series constraints on Jan Mayen Island and the Kolbeinsey Ridge. Chemical Geology. 2016;444:128-40. doi: 10.1016/j.chemgeo.2016.09.035
  10. Gill J, Michael P, Woodcock J, Dreyer B, Ramos F, Clague D, et al. Spatial and Temporal Scale of Mantle Enrichment at the Endeavour Segment, Juan de Fuca Ridge. Journal of Petrology. 2016:egw024.doi: 10.1093/petrology/egw024
  11. González-Guzmán R, Weber B, Manjarrez-Juárez R, Cisneros de León A, Hecht L, Herguera-García JC. Provenance, age constraints and metamorphism of Ediacaran metasedimentary rocks from the El Triunfo Complex (SE Chiapas, México): evidence for Rodinia breakup and Iapetus active margin. International Geology Review. 2016;58(16):2065-91. doi: 10.1080/00206814.2016.1207208
  12. Grocke SB, Cottrell E, de Silva S, Kelley KA. The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth and Planetary Science Letters. 2016;440:92-104. doi: 10.1016/j.epsl.2016.01.026
  13. Jicha BR, Singer BS, Sobol P. Re-evaluation of the ages of 40Ar/39Ar sanidine standards and supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer. Chemical Geology. 2016;431:54-66. doi: 10.1016/j.chemgeo.2016.03.024
  14. Lam KT. Institutional research output management HKUST Library's experience. In: Digital Dissertation Consortium Annual Meeting. Taipei, Taiwan; 2016.
  15. Lawley CJ. Compositional symmetry between Earth’s crustal building blocks. Geochemical Perspectives Letters. 2016:117-27. doi: 10.7185/geochemlet.1612
  16. Lee H, Muirhead JD, Fischer TP, Ebinger CJ, Kattenhorn SA, Sharp ZD, et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nature Geoscience. 2016;9(2):145-9. doi: 10.1038/ngeo2622
  17. Lundstrom CC, Glazner AF. Silicic Magmatism and the Volcanic–Plutonic Connection. Elements. 2016;12(2):91-6. doi: 10.1098/rsta.2018.0019
  18. McLean NM, Bowring JF, Gehrels G. Algorithms and software for U-Pb geochronology by LA-ICPMS. Geochemistry, Geophysics, Geosystems. 2016;17(7):2480-96. doi: 10.1002/2015GC006097
  19. Müller DR, Seton M, Zahirovic S, Williams SE, Matthews KJ, Wright NM, et al. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences. 2016;44(1):107-38. doi: 10.1146/annurev-earth-060115-012211
  20. Rivera TA, Schmitz MD, Jicha BR, Crowley JL. Zircon Petrochronology and 40Ar/39Ar Sanidine Dates for the Mesa Falls Tuff: Crystal-scale Records of Magmatic Evolution and the Short Lifespan of a Large Yellowstone Magma Chamber. Journal of Petrology. 2016:egw053. doi: 10.1093/petrology/egw053
  21. Salas PA, Rabbia OM, Hernández LB, Ruprecht P. Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S–70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile. International Journal of Earth Sciences. 2016. doi: 10.1007/s00531-016-1357-5
  22. Scudder RP, Murray RW, Schindlbeck JC, Kutterolf S, Hauff F, Underwood MB, et al. Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment. Progress in Earth and Planetary Science. 2016;3(1). doi: 10.1186/s40645-015-0077-y
  23. Shillington DJ, Gaherty JB, Ebinger CJ, Scholz CA, Selway K, Nyblad AA, et al. Acquisition of a Unique Onshore/Offshore Geophysical and Geochemical Dataset in the Northern Malawi (Nyasa) Rift. Seismological Research Letters. 2016;87(6). doi: 10.1785/0220160112
  24. Strong DT, Turnbull RE, Haubrock S, Mortimer N. Petlab: New Zealand’s national rock catalogue and geoanalytical database. New Zealand Journal of Geology and Geophysics. 2016:1-7. doi: 10.1080/00288306.2016.1157086
  25. Sullivan PL, Ma L, West N, Jin L, Karwan DL, Noireaux J, et al. CZ-tope at Susquehanna Shale Hills CZO: Synthesizing multiple isotope proxies to elucidate Critical Zone processes across timescales in a temperate forested landscape. Chemical Geology. 2016. doi: 10.1016/j.chemgeo.2016.05.012
  26. Vaughan AA. Discharge-Suspended Sediment Relations: Near-channel Environment Controls Shape and Steepness, Land Use Controls Median and Low Flo w Conditions. Vol Master of Science. Logan: Utah State; 2016.
  27. Weiss Y, Class C, Goldstein SL, Hanyu T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature. 2016;537. doi: 10.1038/nature19113
  28. Werner TT, Mudd GM, Jowitt SM. The world’s by-product and critical metal resources part II: A method for quantifying the resources of rarely reported metals. Ore Geology Reviews. 2016. doi: 10.1016/j.oregeorev.2016.08.008
  29. Zhang Z, Li S, Suo Y, Somerville ID, Li X. Formation mechanism of the global Dupal isotope anomaly. Geological Journal. 2016. doi: 10.1002/gj.2751

EarthChem: 2015

  1. Andersen MB, Elliott T, Freymuth H, Sims KW, Niu Y, Kelley KA. The terrestrial uranium isotope cycle. Nature. 2015;517(7534):356-9. doi: 10.1038/nature14062
  2. Bianchi TS, Thornton DC, Yvon-Lewis SA, King GM, Eglinton TI, Shields MR, et al. Positive Priming of Terrestrially-Derived Dissolved Organic Matter in a Freshwater Microcosm System. Geophysical Research Letters. 2015:n/a - n/a. doi: 10.1002/2015GL064765
  3. Coble MA, Mahood GA. Geology of the High Rock caldera complex, northwest Nevada, and implications for intense rhyolitic volcanism associated with flood basalt magmatism and the initiation of the Snake River Plain–Yellowstone trend. Geosphere. 2015;12(1):58-113. doi: 10.1130/GES01162.1
  4. Condie K. Changing Tectonic Settings Through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research. 2015. doi: 10.1016/j.precamres.2015.05.004
  5. Glazner AF, Coleman DS, Mills RD. Advances in VolcanologyThe Volcanic-Plutonic Connection. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. doi: 10.1007/11157_2015_11
  6. Gu N, Jiang W, Wang L, Zhang E, Yang S, Xiong S. Rainfall thresholds for the precipitation of carbonate and evaporite minerals in modern lakes in northern China. Geophysical Research Letters. 2015:n/a - n/a. doi: 10.1002/2015GL064340
  7. Hazen RM, Grew ES, Downs RT, Golden J, Hystad G. Mineral ecology: chance and necessity in the mineral diversity of terrestrial planets. The Canadian Mineralogist. 2015. doi: 10.3749/canmin.1400086
  8. Herndon EM, Dere AL, Sullivan PL, Norris D, Reynolds B, Brantley SL. Landscape heterogeneity drives contrasting concentration–discharge relationships in shale headwater catchments. Hydrology and Earth System Sciences. 2015;19(8):3333-47. doi: 10.5194/hess-19-3333-2015
  9. Herndon EM, Dere AL, Sullivan PL, Norris D, Reynolds B, Brantley SL. Biotic controls on solute distribution and transport in headwater catchments. Hydrology and Earth System Sciences Discussions. 2015;12(1):213-43. doi: 10.5194/hess-19-3333-2015
  10. Horsburgh JS, Morsy MM, Castronova AM, Goodall JL, Gan T, Yi H, et al. Hydroshare: Sharing Diverse Environmental Data Types and Models as Social Objects with Application to the Hydrology Domain. JAWRA Journal of the American Water Resources Association. 2015:n/a - n/a.
  11. Keller BC, Schoene B, Barboni M, Samperton KM, Husson JM. Volcanic–plutonic parity and the differentiation of the continental crust. Nature. 2015;523(7560):301-7. doi: 10.1038/nature14584
  12. Kraepiel AM, Dere AL, Herndon EM, Brantley SL. Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania. Biogeochemistry. 2015. doi: 10.1007/s10533-015-0068-5
  13. Machlus ML, Ramezani J, Bowring SA, Hemming SR, Tsukui K, Clyde WC. A strategy for cross-calibrating U–Pb chronology and astrochronology of sedimentary sequences: An example from the Green River Formation, Wyoming, USA. Earth and Planetary Science Letters. 2015;413:70-8. doi: 10.1016/j.epsl.2014.12.009
  14. Manuella FC, Scribano V, Carbone S, Brancato A. The Hyblean xenolith suite (Sicily): an unexpected legacy of the Ionian–Tethys realm. International Journal of Earth Sciences. 2015. doi: 10.1007/s00531-015-1151-9
  15. Murphy BS. Upper-crustal magma evolution at intermediate arc systems: Uranium-series Zircon chronochemistry of the Unzen Volcanic Complex, Southwestern Japan. Vol Geology. Oregon State University; 2015.
  16. Paterson SR, Ducea MN. Arc Magmatic Tempos: Gathering the Evidence. Elements. 2015;11(2):91-8. doi: 10.2113/gselements.11.2.91
  17. Phillips FM, Argento DC, Bourlès DL, Caffee MW, Dunai TJ, Goehring B, et al. Where now? Reflections on future directions for cosmogenic nuclide research from the CRONUS Projects. Quaternary Geochronology. 2015. doi: 10.1016/j.quageo.2015.04.010
  18. Tani K, Dunkley DJ, Chang Q, Nichols AR, Shukuno H, Hirahara Y, et al. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu–Bonin–Mariana Arc: Syntectonic granitic crust formation during back-arc rifting. Earth and Planetary Science Letters. 2015;424:84-94. doi: 10.1016/j.epsl.2015.05.019
  19. Touboul M, Puchtel IS, Walker RJ. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature. 2015. doi: 10.1038/nature14355
  20. Vandekerkhove E, Bertrand S, Reid B, Bartels A, Charlier B. Sources of dissolved silica to the fjords of northern Patagonia (44-48°S): the importance of volcanic ash soil distribution and weathering. Earth Surface Processes and Landforms. 2015:n/a - n/a. doi: 10.1002/esp.3840
  21. Vitolo C, Elkhatib Y, Reusser D, Macleod CJ, Buytaert W. Web technologies for environmental Big Data. Environmental Modelling & Software. 2015;63:185-98. doi: 10.1016/j.envsoft.2014.10.007
  22. Weiss Y, McNeill J, Pearson GD, Nowell GM, Ottley CJ. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature. 2015;524(7565):339-42. doi: 10.1038/nature14857
  23. White WM. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology. 2015;419:10-28. doi: 10.1016/j.chemgeo.2015.09.026

EarthChem: 2014

  1. Bataille CP, Brennan SR, Hartmann J, Moosdorf N, Wooller MJ, Bowen GJ. A geostatistical framework for predicting variability in strontium concentrations and isotope ratios in Alaskan rivers. Chemical Geology. 2014. doi: 10.1016/j.chemgeo.2014.08.030
  2. Carr MJ, Feigenson MD, Bolge LL, Walker JA, Gazel E. RU_CAGeochem, a database and sample repository for Central American volcanic rocks at Rutgers University. Geoscience Data Journal. 2014:n/a - n/a. doi: 10.1002/gdj3.10
  3. Clemens JD, Bezuidenhout A. Origins of co-existing diverse magmas in a felsic pluton: the Lysterfield Granodiorite, Australia. Contributions to Mineralogy and Petrology. 2014;167(3). doi: 10.1007/s00410-014-0991-9
  4. Clemens JD, Phillips GN. Inferring a deep-crustal source terrane from a high-level granitic pluton: the Strathbogie Batholith, Australia. Contributions to Mineralogy and Petrology. 2014;168(5). doi: 10.1007/s00410-014-1070-y
  5. Gregory LC, Thomas AL, Walker RT, Garland R, Mac Niocaill C, Fenton CR, et al. Combined uranium series and 10Be cosmogenic exposure dating of surface abandonment: A case study from the Ölgiy strike-slip fault in western Mongolia. Quaternary Geochronology. 2014. doi: 10.1016/j.quageo.2014.07.005
  6. Hazen RM. Data-driven abductive discovery in mineralogy. American Mineralogist. 2014;99(11-12):2165-70. doi: 10.2138/am-2014-4895
  7. LEE C-, Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters. 2014;393:266-74. doi: 10.1016/j.epsl.2014.02.044
  8. Mysen B. Water-melt interaction in hydrous magmatic systems at high temperature and pressure. Progress in Earth and Planetary Science. 2014;1(1):4. doi: 10.1186/2197-4284-1-4
  9. Ortolano G, Cirrincione R, Pezzino A, Tripodi V, Zappala L. Petro-structural geology of the Eastern Aspromonte Massif crystalline basement (southern Italy-Calabria): an example of interoperable geo-data management from thin section – to field scale. Journal of Maps. 2014:1-20. doi: 10.1080/17445647.2014.948939

EarthChem: 2013

  1. Aalbersberg IJ, Atzeni S, Koers H, Specker B, Zudilova-Seinstra E. Bringing Digital Science Deep Inside the Scientific Article: the Elsevier Article of the Future Project. LIBER Quarterly. 2013;22.
  2. Adcock SW, Spirito WA, Garrett RG. Geochemical data management - issues and solutions. Geochemistry: Exploration, Environment, Analysis. 2013;13(4):337-48. doi: 10.1144/geochem2011-084
  3. Beaulieu SE, Baker ET, German CR, Maffei A. An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems. 2013;14(11):4892-905. doi: 10.1002/2013GC004998
  4. Clague DA, Dreyer BM, Paduan JB, Martin JF, Chadwick WW, Caress DW, et al. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems. 2013:n/a - n/a. doi: 10.1002/ggge.20240
  5. Clemens JD. Element concentrations in granitic magmas: ghosts of textures past? Journal of the Geological Society. 2013. doi: 10.1144/jgs2013-008
  6. Faccenna C, Becker TW, Jolivet L, Keskin M. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth and Planetary Science Letters. 2013. doi: 10.1016/j.epsl.2013.05.043
  7. Feakins SJ, Levin NE, Liddy HM, Sieracki A, Eglinton TI, Bonnefille R. Northeast African vegetation change over 12 m.y. Geology. 2013;41(3):295-8. doi: 10.1130/G33845.1
  8. Gualda GA, Ghiorso MS. Low-Pressure Origin of High-Silica Rhyolites and Granites. The Journal of Geology. 2013;121(5):537-45. doi: 10.1086/671395
  9. Kirkland CL, Smithies HR, Woodhouse AJ, Howard HM, Wingate MT, Belousova EA, et al. Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Research. 2013;23(2):759-81. doi: 10.1016/
  10. Lam PJ, Robinson LF, Blusztajn J, Li C, Cook MS, McManus JF, et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nature Geoscience. 2013;6(8):622-6. doi: 10.1038/ngeo1873
  11. MacLeod CJ, Johan Lissenberg C, Bibby LE. "Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology. 2013;41(4):459-62. doi: 10.1130/G33904.1
  12. Pisias NG, Murray RW, Scudder RP. Multivariate statistical analysis and partitioning of sedimentary geochemical data sets: General principles and specific MATLAB scripts. Geochemistry, Geophysics, Geosystems. 2013;14(10). doi: 10.1002/ggge.20247
  13. Shervais JW, Evans JP, Toy V, Eichelberger J, Kirkpatrick J, Clarke A. Drilling Active Tectonics and Magmatism (Volcanics, Geoprisms, Fault Zones Post-SAFOD) Proceedings of a Workshop. Utah State University; 2013.
  14. Van Kranendonk MJ, Kirkland CL. Orogenic climax of Earth: The 1.2-1.1 Ga Grenvillian superevent. Geology. 2013. doi: 10.1130/G34243.1
  15. Yachi Y, Kitagawa H, Kunihiro T, Nakamura E. Software Dedicated for the Curation of Geochemical Data Sets in Analytical Laboratories. Geostandards and Geoanalytical Research. 2013:n/a - n/a. doi: 10.1111/j.1751-908X.2013.00205.x
  16. Yang Z-, Zhou J-. Can we identify source lithology of basalt? Scientific Reports. 2013;3. doi: 10.1038/srep01856

EarthChem: 2012

  1. Bataille CP, Laffoon J, Bowen GJ. Mapping multiple source effects on the strontium isotopic signatures of ecosystems from the circum-Caribbean region. Ecosphere. 2012;3(12):art118. doi: 10.1890/ES12-00155.1
  2. Bataille CP, Bowen GJ. Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies. Chemical Geology. 2012;304-305:39-52. doi: 10.1016/j.chemgeo.2012.01.028
  3. Chappell BW, Wyborn D. Origin of enclaves in S-type granites of the Lachlan Fold Belt. Lithos. 2012. doi: 10.1016/j.lithos.2012.07.012
  4. Clemens JD, Birch WD. Assembly of a zoned volcanic magma chamber from multiple magma batches: The Cerberean Cauldron, Marysville Igneous Complex, Australia. Lithos. 2012. doi: 10.1016/j.lithos.2012.09.007
  5. Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry Geophysics Geosystems. 2012;13. doi: 10.1029/2012GC004370
  6. Keller BC, Schoene B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature. 2012;485:490-3. doi: 10.1038/nature11024
  7. Kirkland CL, Smithies HR, Woodhouse AJ, Howard HM, Wingate MT, Belousova EA, et al. Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Research. 2012. doi: 10.1016/
  8. Larner F, Rehkamper M. Evaluation of Stable Isotope Tracing for ZnO Nanomaterials—New Constraints from High Precision Isotope Analyses and Modeling. Environmental Science & Technology. 2012;46:4149-58. doi: 10.1021/es204440d
  9. Olson JR, Hawkins CP. Predicting natural base-flow stream water chemistry in the western United States. Water Resour. Res.. 2012;48:W02504-. Abstract. doi: 10.1029/2011WR011088
  10. Porder S, Ramachandran S. The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant and Soil. 2012:1-15. doi: 10.1007/s11104-012-1490-2

EarthChem: 2011

  1. Box MR, Krom MD, Cliff RA, Bar-Matthews M, Almogi-Labin A, Ayalon A, et al. Response of the Nile and its catchment to millennial-scale climatic change since the LGM from Sr isotopes and major elements of East Mediterranean sediments. Quaternary Science Reviews. 2011;30:431-42. doi: 10.1016/j.quascirev.2010.12.005
  2. Conrad CP, Bianco TA, Smith EI, Wessel P. Patterns of intraplate volcanism controlled by asthenospheric shear. Nature Geosci. 2011;4:317-21. doi: 10.1038/ngeo1111
  3. Hein A, Kilikoglou V. Prototype of a web-based relational database for archaeological ceramics. Archaeometry. 2011. doi: 10.1111/j.1475-4754.2011.00618.x
  4. Moore J, White WM, Paul D, Duncan RA, Abouchami W, Galer SJ. Evolution of shield-building and rejuvenescent volcanism of Mauritius. Journal of Volcanology and Geothermal Research. 2011;207:47-66. Abstract. doi: 10.1016/j.jvolgeores.2011.07.005
  5. Rauch JN. Global distributions of Fe, Al, Cu, and Zn contained in Earth's derma layers. Journal of Geochemical Exploration. 2011;110:193-201. Abstract. doi: 10.1016/j.gexplo.2011.05.008
  6. Rodrigues C, Máguas C, Prohaska T. Strontium and oxygen isotope fingerprinting of green coffee beans and its potential to proof authenticity of coffee. European Food Research and Technology. 2011:1-13. doi: 10.1007/s00217-010-1362-z
  7. Shkotin A, Ryakhovsky V, Kudryavtsev D. Towards OWL-based Knowledge Representation in Petrology. Arxiv preprint arXiv:1106.1510. 2011.
  8. Vervoort JD, Plank T, Prytulak J. The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta. 2011;75:5903-26. Abstract. doi: 10.1016/j.gca.2011.07.046

EarthChem: 2010

  1. Sedransk N, Young LJ, Kelner KL, Moffitt RA, Thakar A, Raddick J, et al. Make Research Data Public? Not Always so Simple: A Dialogue for Statisticians and Science Editors. Statistical Science. 2010;25:41-50.
  2. Tomkins AG. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochimica et Cosmochimica Acta. 2010;74:3246-59. doi: 10.1016/j.gca.2010.03.003
  3. Yager DB, Hofstra AH, Fifarek K, Webbers A. Development of an igneous rock database with geologic functions: Application to Neogene bimodal igneous rocks and mineral resources in the Great Basin. Geosphere. 2010;6 (5):691-730. doi: 10.1130/GES00516.1

EarthChem: 2009

  1. Clemens JD, Darbyshire DP, Flinders J. Sources of post-orogenic calcalkaline magmas: The Arrochar and Garabal Hill–Glen Fyne complexes, Scotland. Lithos. 2009;112:524-42. Abstract. doi: 10.1016/j.lithos.2009.03.026
  2. Farmer GL, Walker JD, Ash J, Glazner A. Online Access to Western North American Igneous Rock Geochemical Data. Eos, Transactions, American Geophysical Union (EOS). 2009;90. doi: 10.1029/2009EO010002
  3. Renne PR, Deino AL, Hames WE, Heizler MT, Hemming SR, Hodges KV, et al. Data reporting norms for 40Ar/39Ar geochronology. Quaternary Geochronology. 2009;4:346-52. doi: 10.1016/j.quageo.2009.06.005
  4. VanLaningham S, Pisias NG, Duncan RA, Clift PD. Glacial-interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of Beringian outwashing. Earth and Planetary Science Letters. 2009;277:64-72. Abstract. doi: 10.1016/j.epsl.2008.09.033

EarthChem: 2008

  1. Blard PH, Farley KA. The influence of radiogenic 4He on cosmogenic 3He determinations in volcanic olivine and pyroxene. Earth and Planetary Science Letters. 2008;276:20-9. doi: 10.1016/j.epsl.2008.09.003
  2. Olsen PE, Kent DV, Geissman JW. CPCP: Colorado Plateau Coring Project–100 Million Years of Early Mesozoic Climatic, Tectonic, and Biotic Evolution of an Epicontinental Basin Complex. Scientific Drilling. 2008. doi: 10.2204/

EarthChem: 2007

  1. Mysen BO. The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochimica et Cosmochimica Acta. 2007;71:1820-34. doi: 10.1016/j.gca.2007.01.007
  2. Takeuchi A, Larson PB, Suzuki K. Influence of paleorelief on the Mid-Miocene climate variation in southeastern Washington, northeastern Oregon, and western Idaho, USA. Palaeogeography, Palaeoclimatology, Palaeoecology. 2007;254:462-76. Abstract. doi: 10.1016/j.palaeo.2007.06.023

EarthChem: 2006

  1. Ito G, Mahoney JJ. Melting a high 3He/4He source in a heterogeneous mantle. Geochemistry, Geophysics, Geosystems. 2006;7:Q05010. doi: 10.1029/2005GC001158
  2. Khan SD, Flower MF, Sultan MI, Sandvol E. Introduction to TETHYS–an interdisciplinary GIS database for studying continental collisions. Journal of Asian Earth Sciences. 2006;26:613-25. doi: 10.1016/j.jseaes.2004.12.001
  3. Mysen BO. Redox equilibria of iron and silicate melt structure: Implications for olivine/melt element partitioning. Geochimica et cosmochimica Acta. 2006;70:3121-38. doi: 10.1016/j.gca.2006.03.014
  4. Siddoway C, Ricci CA. Scientific Frontiers and Future Research Directions in Antarctic Geosciences. Terra Antartica Reports. 2006;12:1-7.
  5. Tikoff B, Van der Pluijm B, Hibbard J, Keller GR, Mogk D, Selverstone J, et al. An Integrated Geologic Framework for EarthScope's USArray. EOS. 2006;87(23):221,224. doi: 10.1029/2006EO230001
  6. Walker JD, Bowers TD, Black RA, Glazner AF, Lang Farmer G, Carlson RW. A geochemical database for western North American volcanic and intrusive rocks (NAVDAT). Geoinformatics: Data to Knowledge. 2006;397:61-71.
  7. Wen L. A compositional anomaly at the Earth's core–mantle boundary as an anchor to the relatively slowly moving surface hotspots and as source to the DUPAL anomaly. Earth and Planetary Science Letters. 2006;246:138-48. doi: 10.1016/j.epsl.2006.04.024

EarthChem: 2005

  1. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research. 2005;29:333-8. doi: 10.1111/j.1751-908X.2005.tb00904.x

EarthChem: 2004

  1. Cervato C, Goldstein SL, Grossman EL, Lehnert KA, McArthur JM. Joint discussion of sedimentary geochemistry data management systems that cross the waterline. Eos Trans. AGU. 2004;85. Abstract. doi: 10.1029/2004EO440004
  2. Wagener T, Sivapalan M, McDonnell J, Hooper R, Lakshmi V, Liang X, et al. Predictions in Ungauged Basins As a Catalyst for Multidisciplinary Hydrology. Eos, Transactions, American Geophysical Union (EOS). 2004;85. doi: 10.1029/2004EO440003