PetDB: 2018

  1. Barnes, S., and Arndt, N., 2018 Chapter 6 – Distribution and Geochemistry of Komatiites and Basalts Through the Archean, Earth’s Oldest Rocks, pp. 103-132, doi:10.1016/B978-0-444-63901-1.00006-X
  2. Borghini, G., Francomme, J., Fumagalli, P., 2018, Melt-dunite interactions at 0.5 and 0.7 GPa: experimental constraints on the origin of olivine-rich troctolites, Lithos, doi:10.1016/j.lithos.2018.09.022
  3. Brunelli, D., Cipriani, A., Bonatti, E., 2018,Thermal effects of pyroxenites on mantle melting below mid-ocean ridges, Nature Geoscience, doi:10.1038/s41561-018-0139-z
  4. Chen, B., Yu, J-J., Liu, S-J, 2018, Source characteristics and tectonic setting of mafic–ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic–ultramafic intrusion, Lithos, doi:10.1016/j.lithos.2018.03.016
  5. Cheng. T., Nebl, O., Sossi, P., Wu, J., Siebel, W., Chen, F., Nebel-Jacobsen, Y., 2018, On the Sr-Nd-Pb-Hf isotope code of enriched, Dupal-type sub-continental lithospheric mantle underneath south-western China, Chemical Geology, doi:10.1016/j.chemgeo.2018.05.018
  6. Coogan, L., and Gillis, K., 2018 Temperature dependence of chemical exchange during seafloor weathering: Insights from the Troodos ophiolite, GCA, doi:10.1016/j.gca.2018.09.025
  7. Crow, M., Van Waveren, I., Hasibuan, F., 2018, The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an Early Permian volcanic – plutonic centre in Sumatra, Indonesia, J Asian Earth Sci, doi:10.1016/j.jseaes.2018.08.003
  8. Deng, Z., Moynier, F., Sossi, P., Chaussidon, M., 2018, Bridging the depleted MORB mantle and the continental crust using titanium isotopes, Geochemical Perspectives Letters, doi:10.7185/geochemlet.1831
  9. Deschamps, F.,  Duchêne, S., de Sigoyer, J.,  Bosse, V.,  Benoit, Vanderhaeghe, M., 2018, Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China), Journal of Petrology, doi:10.1093/petrology/egy007
  10. Ferriss, E., Plank, T., Newcomb, M., Walker, D., Hauri, E., 2018, Rates of dehydration of olivines from San Carlos and Kilauea Iki, GCA, doi:10.1016/j.gca.2018.08.050
  11. Finlayson V., Konter, J., Konrad, A., Koppers, A., Jackson, M., Rooney, T., 2018, Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot, EPSL, doi:10.1016/j.epsl.2018.08.020
  12. Frueh-Green, G., Orcutt, B., Roumejon, S., Lilley, M., Morono, Y., Cotterill, C., Green, S., Escartin, J., John, B., McCaig, A., Cannat, M., Menez, B., Schwarzenbach, E., Williams, M., Lang, S., Schrenk, M., Brazelton W., Bilenker, L., 2018, Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357), Lithos, doi: 10.1016/j.lithos.2018.09.012
  13. Garber, J., Maurya, S., Hernandez, J-A., Duncan, M., Zeng, L., Zhang, H., Faul, U., McCammon, C., Montagner, J-P., Moresi, L., Romanowicz, B., Rudnick, R., Stixrude, L., 2018, Multidisciplinary constraints on the abundance of diamond and eclogite in the cratonic lithosphere, G-Cubed, doi:10.1029/2018GC007534
  14. Gomez-Tuena, A.,Cavazos-Tovar, J., Parolari, M., Straub, S., Espinasa-Perena, R.,2018, Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas, Lithos, doi: 10.1016/j.lithos.2018.10.005
  15. Green, 2018, Constraining Magma Evolution mechanisms along the Galapagos Spreading Center between 102 W and 82 W through trace element Geochemistry, BS Thesis, The Ohio State University,https://kb.osu.edu/bitstream/handle/1811/86099/GalapagosFINALthesisAG.pdf?sequence=1
  16. Grove, M., Brown, S., 2018, Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited, AJS, doi:10.2475/01.2018.02
  17. Hanley J., Koga K., 2018,  Halogens in Terrestrial and Cosmic Geochemical Systems: Abundances, Geochemical Behaviors, and Analytical Methods. In: Harlov D., Aranovich L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham, doi:10.1007/978-3-319-61667-4_2.
  18. Hara, T., et al., 2018, In-situ Sr-Pb isotope geochemistry of lawsonite: A new method to investigate slab-fluids, Lithos, doi:10.1016/j.lithos.2018.09.001
  19. Haraguchi, S., Ueki, K, Yoshida, K., Kuwatani, T., Mohaned, M., Horiuchi, S., Iwamori, H., 2018, Geochemical database of Japanese islands for basement rocks, Geological Magazine, doi:10.5575/geosoc.2018.0027
  20. Homrighausen, S., Hoernle, K., Geldmacher, J., Wartho, J-A., Portnyagin, M., Werner, R., can den Bogaards, P., Garbe-Schoenberg,D., 2018, Unexpected HIMU-type late-stage volcanism on the Walvis Ridge, EPSL, doi: 10.1016/j.epsl.2018.03.049
  21. Homrighausen, S., Hoernle, K., Hauff, F., Gedlnacher, J., Wartho, J-A., van den Bogaard, P.,Garbe-Schoendberg, D., 2018, Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics, Earth Science Reviews, vol 182, doi:10.1016/j.earscirev.2018.04.009
  22. Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J-A., van den Bogaard, P., Garbe-Scheonberg, D., 2018, New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin, GCA, doi: 10.1016/j.gca.2018.09.002
  23. Iwamori, H., Nakamura, H., Yoshida, M., Nakagawa, T., Ueki, K., Nakao, A., Nishizawa, T., Haraguchi, S., 2018, Trace-element characteristics of east–west mantle geochemical hemispheres, Comptes Rendus Geoscience, doi:10.1016/j.crte.2018.09.007
  24. Jiao, S., Zhang, Q., Zhou, Y., Cgen, W., Liu, X., Gopalakrishnan, G., 2018, Progress and challenges of big data research on petrology and geochemistry, Solid Earth Sciences, doi:10.1016/j.sesci.2018.06.002
  25. Koepke, J., Botchamikov, R., Natland, J., 2018, Crystallization of late-stage MORB under varying water activities and redox conditions: Implications for the formation of highly evolved lavas and oxide gabbro in the ocean crust, Lithos, doi:10.1016/j.lithos.2018.10.001
  26. Larrea, P.,Widom, E., Siebe, C., Salinas, S., Kuentz, D., 2018, A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity, Chemical Geology, doi:10.1016/j.chemgeo.2018.10.026
  27. Leuthold, J., Lissenberg, C., O’Driscoll, B., Karakas, O., Falloon, T., Klimentyeva, D., Ulmer, P., 2018, Partial Melting of Lower Oceanic Crust Gabbro: Constraints From Poikilitic Clinopyroxene Primocrysts, Frontiers in Earth Science, doi:10.3389/feart.2018.00015
  28. Li, B., Shi, X., Wang, J., Yan, Q., Liu, C., 2018, Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12–14°S), Journal of Marine Systems, doi:10.1016/j.jmarsys.2018.02.003
  29. Li, Y., Wang, G., Santosh, M., Wang, J., Dong, P. Li, H., 2018, Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southern Central Asian Orogenic Belt, Gondwana Res., doi:10.1016/j.gr.2018.02.018
  30. Lund, D., Seely, E., Asimow, P., Lewis, M., McCart, S., Mudahy, A., 2018, Anomalous Pacific-Antarctic Ridge volcanism precedes glacial Termination 2, G-Cubed, doi:10.1029/2017GC007341
  31. Manuella, F., Scribano, V., Carbone, F., 2018, Abyssal serpentinites as gigantic factories of marine salts and oil, Marine and Petroleum Geology, doi:10.1016/j.marpetgeo.2018.03.026
  32. McNamara, A.K., 2018, A review of large low shear velocity provinces and ultra low velocity zones, Tectonophysics, doi:10.1016/j.tecto.2018.04.015
  33. Melnik, O., Bindeman, I., 2018 Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon. American Mineralogist, doi:10.2138/am-2018-6182
  34. Menke, W.. 2018, Chapter 10: Factor Analysis, Geophysical Data Analysis (Forth Edition), pp.207-222
  35. Moore,D., McLaughlin, R., Lienkaemper, J., 2018, Serpentinite-rich Gouge in a Creeping Segment of the Bartlett Springs Fault, Northern California: Comparison with SAFOD and Implications for Seismic Hazard, Tectonics, doi: 10.1029/2018TC005307
  36. Mukhopadhyay, R., Ghosh, A., Iher, S., 2018, Chapter 3: Volcanics, The Indian Ocean Nodule Field (second Edition), pp.71-46, doi;10.1016/B978-0-12-805474-1.00003-8
  37. Ou, Q., Wang, Q., Wuman, D., Zhang, C., Hao, L, Dan, W., Jiang, Z., Wu, F., Zhang, H., Xia, X., Ma, L., Long, X., 2018, Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet, GSA Bulletin, doi:10.1130/B31911.1
  38. Putirka, K., Tao, Y., K.R. Hari, M. R. Perfit, M. G. Jackson, R. Arevalo; The mantle source of thermal plumes: Trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don’t matter). American Mineralogist ; 103 (8): 1253–1270. doi: https://doi.org/10.2138/am-2018-6192
  39. Ranaweera, L., Ota, T., Moriguti, T., Tanaka, R., Nakamura, E., 2018, Circa 1 Ga sub-seafloor hydrothermal alteration imprinted on the Horoman peridotite massif, Scientific Reports, doi:10.1038/s41598-018-28219-x
  40. Roubinet, C., Moreira, M., 2017, Atmospheric noble gases in Mid-Ocean Ridge Basalts: Identification of atmospheric contamination processes, GCA, doi:10.1016/j.gca.2017.10.027
  41. Saccani, E., Dilek, Y., Photiades, A., 2018, Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites, doi:10.1130/L602.1
  42. Sanfilippo, A., Dick, H., Marschall, H., Lissenberg, C., Urann, B., 2018, Emplacement and high‐temperature evolution of gabbros of the 16.5 °N oceanic core complexes (Mid‐Atlantic Ridge): insights into the compositional variability of the lower oceanic crust, G-Cubed, doi: 110.1029/2018GC007512
  43. Secchiari, A., Montanini, A., Bosch, D. et al., 2018, The contrasting geochemical message from the New Caledonia gabbronorites: insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting Contrib Mineral Petrol 173: 66. doi: 10.1007/s00410-018-1496-8
  44. Shervais, J., Reagan, M., Haugen, E., Almeev, R., Pearce, J., Prytulak, J., Ryan, J., Whattam, S., Godard, M., Chapman, T., Li, H., Kurz, W., Nelson, W., Heaton, D., Kirchenbaur, M., Shimizu, K., Sakuyama, T., Li , Y., Vetter, S., 2018, Magmatic Response to Subduction Initiation, Part I: Forearc basalts of the Izu‐Bonin Arc from IODP Expedition 352, G-Cubed, doi: 10.1029/2018GC007731
  45. Sisson, T.W. & Kelemen, P.B., 2018, Near-solidus melts of MORB + 4 wt% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation Contrib Mineral Petrol 173: 70. doi:10.1007/s00410-018-1494-x
  46. Triantafyllou, A., Berger, J., Baele, J., Bruguier, O., Diot, H., Ennih, N., et al., 2018, Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambrian Research, doi:10.1016/j.precamres.2017.10.022
  47. Varas-Reus, M., Garrido, C., Marchesi, C., Bosch, D., Hidas, K., 2018 ,Genesis of Ultra-High Pressure Garnet Pyroxenites in Orogenic Peridotites and its Bearing on the Compositional Heterogeneity of the Earth’s Mantle, GCA, doi:10.1016/j.gca.2018.04.033
  48. Vigneresse, JL. & Truche, L. Chemical descriptors for describing physico-chemical properties with applications to geosciencesJ Mol Model (2018) 24: 231. doi:10.1007/s00894-018-3770-0
  49. Voynets, A., Kostitsyn, Y., Pevzner, M., Goltsman, Y. Perepelov, 2018, Sr-Nd isotopic composition of Neogene-Quaternary volcanic rocks of the Sredinny Range, Kamchatka: Implications for magma generation in the back-arc, 10th Biannual Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2018),http://www.kscnet.ru/ivs/conferences/jkasp2018/en/proceedings
  50. Ware, B., Jourdan, F., Merle, R., Chiaradia, M., Hodges, K., 2018, The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the oldest and most compositionally homogenous province of the Phanerozoic, Journal of Petrology, doi:10.1093/petrology/egy040
  51. Wei, Y., Mukasa, S., Zheng, J., Fahnestock, M., Bryce, J., 2018, Phanerozoic lower crustal growth from heterogeneous mantle beneath the North China Craton: Insights from the diverse Hannuoba pyroxenite xenoliths, Lithos, doi:10.1016/j.lithos.2018.11.001
  52. Winslow, H., 2018, A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes, Master’s Thesis, University of Nevada, Reno, 113 pp., https://scholarworks.unr.edu/handle/11714/3458
  53. Xia, L., Lia, X., 2018, Basalt geochemistry as a diagnostic indicator of tectonic setting, Gondwana Research, doi:10.1016/j.gr.2018.08.006
  54. Yao, J-H., Zhu, W-G., Li, C., Zhong, H., Bai, Z-J, Ripley, E., Li, C., 2018, Petrogenesis and Ore Genesis of the Lengshuiqing Magmatic Sulfide Deposit in Southwest China: Constraints from Chalcophile Elements (PGE, Se) and Sr-Nd-Os-S Isotopes, Economic Geology, doi:10.5382/econgeo.2018.4566
  55. Yoshida, K., Kuwatani, T., Yasumoto, A.,Haraguchi, S.,Ueki, K.,Iwamori, H., 2018, GEOFCM: a new method for statistical classification of geochemical data using spatial contextual information, J. Mineralological and Petrological Sciences, doi:10.2465/jmps.171127
  56. Yu, X., Zeng, G., Chen, L-H., Wang, X-J., Liu, J-Q., Xie, L-W, Yang, T., 2018, Evidence for rutile-bearing eclogite in the mantle sources of the Cenozoic Zhejiang basalts, eastern China, Lithos, doi:10.1016/j.lithos.2018.11.003
  57. Yu, Y., Sun, M., Yuan, C., Zhao, G., Huang, X-L, Rojas-Agramonte, Y., Chen, Q., 2018, Evolution of the middle Paleozoic magmatism in the Chinese Altai: Constraints on the crustal differentiation at shallow depth in the accretionary orogen, Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2018.07.026
  58. Zhang, G., Luo, Q., Zhao, J., Jackson, M., Guo, L., Zhong, L., 2018 Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, doi:10.1016/j.epsl.2018.02.040
  59. Zhang, H., Zhu, Y-F., Geology and geochemistry of pillow basalt in the Huilvshan region (west Junggar, China): Implications for magma source and tectonic setting, Can J Earth Sci, doi:10.1139/cjes-2018-0090
  60. Zhang, W., Zeng, Z., Cui, L., Yin, X., 2018, Geochemical Constrains on MORB Composition and Magma Sources at East Pacific Rise Between 1°S and 2°S, J. Ocean Univ. China, doi:10.1007/s11802-018-3223-5