
traceDs: An accessible database 
of trace element partitioning 

experiments



Database goals
Our goal in developing traceDs is to provide a 
transparent and accessible resource of experimental 
partitioning data for the community. traceDs now 
includes all the experimental trace element partitioning 
data (>5000 experiments).



Database goals
We set a minimum standard for inclusion, with the threshold criteria being 
the inclusion of:

• Experimental conditions (T,P, capsule, device)
• Major element composition of the phases
• Trace element analyses of the phases

The data are stored using a schema derived from that of the Library of 
Experimental Phase Relations (LEPR), modified to account for additional 
metadata, and restructured to permit multiple analytical entries for 
various element/technique/standard combinations. 



What is included in the database?
Experimental determination of partition coefficients

• Phenocryst/matrix partition coefficients
• Unpublished data
• Experiments where the compositions are 

not reported (e.g. just Ds).

Why?

What is NOT included in the database?



Utility goals

Search methodologies – the current version of the site includes 
basic search protocols (by phase, conditions, etc.).  However, the 
output is in approximately the same format as the published 
format.  Therefore, care must be taken in processing the data 
from this raw form into a uniform format. Preprocessed 
spreadsheets for specific minerals are available through the 
Earthchem portal



traceDs provides a resource for:
Experimentalists – The database facilitates experimental design, 

data management plans and data publication.  
Reviewers – This resource may be used by reviewers to test models. 
Modelers – traceDs may be used to create calibration datasets for 

trace element partitioning models.
Practitioners – For those who are attempting to calculate 

differentiation scenarios, the current form allows one to search 
for compositions that match the system of interest



Characteristics of the experimental partitioning 
data in traceDs
Similarity with LEPR

experimental apparatus and conditions

Differences with LEPR
paired phases
multiple analyses of the same element using different 

analytical techniques
Number of elements analyzed



What is actually represented in the database

Each point represents a 
spot where a chemical 

analysis was performed

Typically, analyses of 
each phase are averaged 

and reported as pairs 



Characteristics of the experimental partitioning 
data in traceDs
Reference
Temperature(s) Pressure Starting composition
Apparatus Location of Lab Major elements (all phases)
Analytical Procedure trace elements analytical error
Run time mode temperature trajectory

Restricted vocabulary



Process of database population
The database was populated paper by paper

Development of the upload template – you have been sent a copy

First recommendation – everyone should publish experimental data using 
a similar format that can be uploaded

We will revisit the template after the break



What did we learn during the process of 
population?

Distribution of data in compositional space – Even though we have 
conducted thousands of experiments – the coverage in 
compositional space is uneven – result is that we have a great deal of 
data for some elements/rock types/pressures and none for others.
Over-processed data - We have rarely published the entire analytical 
dataset – rather, we have analysed the experimental charges, then 
averaged the results prior to interpretation and publication

Relevant Citation: Nielsen, R. L., M. Ghiorso, and T. Trishmann (2015), traceDs: What we have learned 
about the existing trace element partitioning data during the population phase, Abstract V33C-3119 
presented at 2015 Fall Meeting, AGU, San Francisco, Calif.



Distribution of data in 
compositional space –
examples from 
plagioclase/melt 
experimental data

Existing Experimental data for plagioclase/melt partitioning

Total # of experiments 276

# experiments Sr 167
that have data Ba 147
for each of La 79
these elements Ce 96

Lu 25
Ti 95
Li 49
Zr 41
Pb 41
Hf 10
Re 1
Os 0

Relevant Citation: Nielsen, R.L., Ustunisik, G., Weinsteiger, A.B., Tepley, F.J., Johnston, A.D. and Kent, A J.R., 2017, 
Trace Element Partitioning Between Plagioclase and Melt: An Investigation of the Impact of Experimental and 
Analytical Procedures, Geochem Geophys Geosys., DOI 10.1002/2017GC007080 



Distribution of data in 
compositional space –
examples from 
plagioclase/melt 
experimental data
for Sr
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Distribution of data in 
compositional space –
examples from 
plagioclase/melt 
experimental data
for Sr
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What can we use this type of information for?
Experimentalists – describe the scope of the existing database.  
Describe where the “holes” are.
Modelers – build a calibration dataset (we will do this in the 
second half of afternoon)
Reviewers – test models that are being submitted for 
publication
Provides a “ready made” database – previously every 
investigator had to compile their own 



Distribution of data in 
compositional space –
examples from 
plagioclase/melt 
experimental data for Ce
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Distribution of data in 
compositional space –
examples from 
plagioclase/melt 
experimental data for Ce
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Distribution of data in 
compositional space –
examples from 
plagioclase/melt 
experimental data for Zr
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Distribution of data in 
compositional space –
examples from 
plagioclase/melt 
experimental data for Pb
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So – why so much scatter
Temperature, pressure and compositional dependence – we can 
build models based on those parameters – and will make some 
efforts towards that in the second part of the afternoon

Analytical and experimental error – which has a greater impact as 
the partition coefficient drops – let’s see why and what the impact 
can be

Now what do I do?



To understand how to model trace element 
partitioning you need to understand the character 
of the compositional, T and P dependencies – that 
requires that we first understand the sources of 
error and its impact



Let us look at how experimental data is processed 
and how you can avoid making systematic errors 
when using published data



Sources of experimental and analytical error

• Contamination – more than a single phase represented 
in an analysis

• Relic heterogeneity from dopant addition
• Loss of component to capsule or volatilization



Sources of processing error
• Documentation error in laboratory
• Publication error – editorial/typo
• Transcription error
• Upload and download error
• Processing error – mistakes made while using the information.
The creation of any database is a human endeavour –
Our goal is to work to improve the collective database and avoid 
re-inventing the wheel 
Most important,  if you see something that you think is an error –
tell me so that we can fix it.



Low pressure experiments 
on the partitioning of  select 
elements between 
plagioclase and basaltic 
liquid (Nielsen et al. MS in 
prep)
Two sets of experiments
Set 1 – 1230 C for 24 hours
Set 2 – 1300 C for 1 hour 
then dropped to 1230 C for 
24 hours
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Resultant low Ds and variations are related to relic cores and in 
addition are a consequence of the dopant acting as a flux – not 
necessarily a Henry’s Law issue
In developing new experimental procedures, we need to balance the 
need to add dopants for highly incompatible elements in order to 
enhance analytical precision and the need to keep the composition 
as close as possible to natural levels
In examining the database, you can make the decision to use either 
doped or undoped experiments, simple/complex temperature 
trajectory, etc. – so long as there is sufficient data to do so



Pb partitioning between 
plagioclase and melt

What is going on?

Dopant volatilization 
after initial 
crystallization

Result – anomalously 
high D
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Plagioclase-melt partitioning 

experiment

What do we see when we look at the 

data in detail?

Experiment TE-32

Starting composition Gorda Ridge 

MORB D9-1

Doped with ~100 PPM 

of several trace elements

1% wt % H2O added

1300 oC initial heating for 1 hour

5 kb, 1210 oC for 24 hours



Ce partitioning between 
plagioclase and melt

What is going on?
Each spot is a single analysis by 
laser ICP-MS
Intent was to analyze plagioclase 
and co-existing glass
Plot to right is the low Mg data 
(presumed to be plagioclase)

What do we average?
Result – anomalously high D
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Zr partitioning between 
plagioclase and melt

Effect of contamination 
increases as D decreases

Result – anomalously 
high D
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Impact of “mixed” 
analyses on calculated Ds
As D drops – the proportional impact of 
a small addition of another phase 
increases
Why is this important?

It introduces a systematic bias to 
measurements of partition coefficients 
that get included in numerical 
expressions

We will discuss this as we process data 
in groups later



Impact of “mixed” 
analyses on 
calculated Ds

from Lissenberg et al., 2013 “the 
degree of trace element 
depletion of plagioclase relative 
to MORB correlates strongly with 
plagioclase D’s, which would 
require the D’s to be increasingly 
erroneous with increasing 
incompatibility —an unlikely 
coincidence”



Impact of “mixed” 
analyses on 
calculated Ds

As D drops – the proportional 
impact of a small addition of 
another phase increases
Why is this important?
We can examine the impact of 
this systematic bias by re-
interpreting the Lissenberg data 
using another set of partition 
coefficients developed for a 
specific composition – in this 
case based on experiments on 
MORB.

D plag 
Nielsen

D plag 
Bedard Ratio

Ti 0.025 0.04 1.6

La 0.038 0.09 2.4

Ce 0.031 0.075 2.4

Sm 0.015 0.06 4.0

Gd 0.0075 0.03 4.0

Y 0.006 0.03 5.0

Lu 0.003 0.02 6.7

Zr 0.0006 0.005 8.3



If we use the alternate 
partition coefficients to 
interpret the same data, we 
find that the model results are 
fundamentally different – in 
fact they suggest the opposite 
conclusion – e.g. within error 
the plagioclase phenocrysts 
are in equilibrium with their 
host.
Take away message – be 
careful that you understand 
the underlying dependencies 
when you calculate a 
numerical expression
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OK – now that we have all these 
cautionary tales – how can we use the 

database to solve problems?



Example from Spinel/melt partitioning experiments
Search for compositional dependencies

Relevant Citation: Nielsen, RL and Beard, JS, 2000, Magnetite-melt HFSE partitioning, Chem. Geology, 164, 21-34
https://doi.org/10.1016/S0009-2541(99)00139-4

https://doi-org.ezproxy.proxy.library.oregonstate.edu/10.1016/S0009-2541(99)00139-4


Example from Spinel/melt 
partitioning experiments
Search for compositional 

dependencies

Experimental data on spinel/melt 
partitioning Nielsen and Beard, 
2000

Include chromite and magnetite
Both 1 atm and high pressure data

To be able to predict partitioning 
behaviour, you need to understand 
the controlling parameters



Example from Spinel/melt 
partitioning experiments
Search for compositional 

dependencies

Experimental data on spinel/melt 
partitioning Nielsen and Beard, 
2000

Include chromite and magnetite
Both 1 atm and high pressure data

To be able to predict partitioning 
behaviour, you need to understand 
the controlling parameters



We can examine a dataset by 
considering a subset of the 
information.  In this case, we 
are looking at a small section 
of the database (~4 -12 mole 
fraction).  We can look at 
other controlling parameters 
by “rotating” the data  



Restricting ourselves to a subset of 
the data, we can see some 

dependence on Mg# of the spinel



Further subdividing the data to a 
narrow range of Mg # yields a 

linear trend for the data

This is attributed to the impact of 
non ideal mixing of spinel 

components – particularly the 
HFSE components

Taking all the dependencies 
together allows us to calculate a 

numerical expression that 
describes spinel/melt partitioning



An alternate approach is to use an elastic 
strain model – however that approach is 
less useful when there are complex 
mixing properties for the trace element 
components.

Such an approach requires a large 
experimental dataset.  In the past 16 
years new data has been published and 
included in the traceDs database – and 
the old expression has not been re-
tested or re-calibrated


